Assuming I have the following dataframe:
>>> df
particpant Counting_Side
1 NaN
1 NaN
1 Left_To_Right
2 NaN
2 NaN
2 NaN
2 NaN
2 NaN
2 Right_To_Left
3 NaN
3 NaN
3 Left_To_Right
4 NaN
4 Right_To_Left
etc.
Based on python pandas
How do I copy the string value from column 'Counting_Side' to all the 'Counting_Side' column replacing all the NaN's - all that according to the particpant's value (1, 2, 3 etc).
so it will look like this:
>>> df
particpant Counting_Side
1 Left_To_Right
1 Left_To_Right
1 Left_To_Right
2 Right_To_Left
2 Right_To_Left
2 Right_To_Left
2 Right_To_Left
2 Right_To_Left
2 Right_To_Left
3 Left_To_Right
3 Left_To_Right
3 Left_To_Right
4 Right_To_Left
4 Right_To_Left
Thanks
Use groupby(...).transform("first")
to transform every group to the first non-NaN value:
df["particpant"] = df.groupby("particpant")["Counting_Side"].transform("first")