I want to create a script that fills a dataframe with values that are the Carthesian product of parameters I want to vary in a series of experiments.
My first thought was to use the product function of itertools
, however it seems to require a fixed set of input lists.
The output I'm looking for can be generated using this sample:
cols = ['temperature','pressure','power']
l1 = [1, 100, 50.0 ]
l2 = [1000, 10, np.nan]
l3 = [0, 100, np.nan]
data = []
for val in itertools.product(l1,l2,l3): #use itertools to get the Carthesian product of the lists
data.append(val) #make a list of lists to store each variation
df = pd.DataFrame(data, columns=cols).dropna(0) #make a dataframe from the list of lists (dropping NaN values)
However, I would like instead to extract the parameters from dataframes of arbitrary shape and then fill up a dataframe with the product, like so (code doesn't work):
data = [{'parameter':'temperature','value1':1,'value2':100,'value3':50},
{'parameter':'pressure','value1':1000,'value2':10},
{'parameter':'power','value1':0,'value2':100},
]
df = pd.DataFrame(data)
l = []
cols = []
for i in range(df.shape[0]):
l.append(df.iloc[i][1:].to_list()) #store the values of each df row to a separate list
cols.append(df.iloc[i][0]) #store the first value of the row as column header
data = []
for val in itertools.product(l): #ask itertools to parse a list of lists
data.append(val)
df2 = pd.DataFrame(data, columns=cols).dropna(0)
Can you recommend a way about this? My goal is creating the final dataframe, so it's not a requirement to use itertools.
Another alternative without product
(nothing wrong with product
, though) could be to use .join()
with how="cross"
to produce successive cross-products:
df2 = df.T.rename(columns=df.iloc[:, 0]).drop(df.columns[0])
df2 = (
df2.iloc[:, [0]]
.join(df2.iloc[:, [1]], how="cross")
.join(df2.iloc[:, [2]], how="cross")
.dropna(axis=0)
)
Result:
temperature pressure power
0 1 1000 0
1 1 1000 100
3 1 10 0
4 1 10 100
9 100 1000 0
10 100 1000 100
12 100 10 0
13 100 10 100
18 50.0 1000 0
19 50.0 1000 100
21 50.0 10 0
22 50.0 10 100
A compacter version with product
:
from itertools import product
df2 = pd.DataFrame(
product(*df.set_index("parameter", drop=True).itertuples(index=False)),
columns=df["parameter"]
).dropna(axis=0)