I want to perform a mixed effect regression in rjags
, with a random slope and intercept. I define the following toy dataset:
library(ggplot2)
library(data.table)
global_slope <- 1
global_int <- 1
Npoints_per_group <- 50
N_groups <- 10
pentes <- rnorm(N_groups,-1,.5)
centers_x <- seq(0,10,length = N_groups)
center_y <- global_slope*centers_x + global_int
group_spread <- 2
group_names <- sample(LETTERS,N_groups)
df <- lapply(1:N_groups,function(i){
x <- seq(centers_x[i]-group_spread/2,centers_x[i]+group_spread/2,length = Npoints_per_group)
y <- pentes[i]*(x- centers_x[i])+center_y[i]+rnorm(Npoints_per_group)
data.table(x = x,y = y,ID = group_names[i])
}) %>% rbindlist()
ggplot(df,aes(x,y,color = as.factor(ID)))+
geom_point()
This is a typical situation of Simpson paradox: an overall increasing trend when you have a decreasing trend within each group (given by the ID
variable).
I define the following model:
library(rjags)
model_code_simpson <-
" model
{
# first level
for (i in 1:n) {
y[i] ~ dnorm(alpha[i] + beta[i] * x[i], tau)
alpha[i] = alpha[group[i]] # random intercept
beta[i] = beta[group[i]] # random slope
}
# second level
for(j in 1:J){
alpha[j] ~ dnorm(mu.alpha, tau.alpha)
beta[j] ~ dnorm(mu.beta, tau.beta)
}
# Priors
mu.alpha ~ dnorm(0,0.001)
mu.beta ~ dnorm(0,0.001)
sigma ~ dunif(0,10)
sigma.alpha ~ dunif(0,10)
sigma.beta ~ dunif(0,10)
# Derived quantities
tau <- pow(sigma,-2)
tau.alpha <- pow(sigma.alpha,-2)
tau.beta <- pow(sigma.beta,-2)
}
"
# Choose the parameters to watch
model_parameters <- c("mu.alpha","tau.alpha","tau.beta","tau")
# define numeric grouping variable
df[,ID2 := .GRP,by = ID]
model_data <- list(n = nrow(df),
y = df$y,
x = df$x,
group = df$ID2,
J = df[,uniqueN(ID)])
model <- jags.model(textConnection(model_code_simpson),
data = model_data,
n.chains = 2)
I get the following error:
Compiling model graph
Resolving undeclared variables
Allocating nodes
Deleting model
Error in jags.model(textConnection(model_code_simpson), data = model_data, :
RUNTIME ERROR:
Compilation error on line 8.
Attempt to redefine node beta[1]
I do not understand what is happening, and related questions did not help me much.
You defined beta
twice. First, beta
is a vector of length n
when you are looping through the data. Second, beta
is a vector of length J
when you are creating the random effects. This "redefining" is causing this issue, but it is an easy fix. You just need to remove that first instance of beta
in your model and it will compile (i.e., just move your nested indexing inside of dnorm()
and you are good to go).
model_code_simpson <-
" model
{
# first level
for (i in 1:n) {
y[i] ~ dnorm(
alpha[group[i]] + beta[group[i]] * x[i],
tau
)
}
# second level
for(j in 1:J){
alpha[j] ~ dnorm(mu.alpha, tau.alpha)
beta[j] ~ dnorm(mu.beta, tau.beta)
}
# Priors
mu.alpha ~ dnorm(0,0.001)
mu.beta ~ dnorm(0,0.001)
sigma ~ dunif(0,10)
sigma.alpha ~ dunif(0,10)
sigma.beta ~ dunif(0,10)
# Derived quantities
tau <- pow(sigma,-2)
tau.alpha <- pow(sigma.alpha,-2)
tau.beta <- pow(sigma.beta,-2)
}
"