We are trying to run a loop through eight different datasets and then save the output in a standardized format afterwards.
Dataframes are called df1
, df2
, df3
, etc.
I can't share the data (here is a sample of the data), but every dataset is a subset of df1
- so it does have the same columns throughout.
df1
would look like:
age wt sex
10 200 F
15 250 F
20 300 F
12 200 M
13 250 M
25 300 M
And the subsetted df
s would be, for example, df2<-df1%>%filter(sex=="F")
, df3<-df1%>%filter(sex=="M")
, and so on for different conditions.
Here is a small example of the code we want to run for each dataframe.
nls.mon <- nls(wt~A*(1-exp(k*(t0-age))),
data=df1,
start = list(A=253.6,k=.03348,t0=32.02158))
aad_mon_est <- data.frame(tidy(nls.mon))
mon_A_est <- as.numeric(aad_mon_est[1, "estimate"])
mon_k_est <- as.numeric(aad_mon_est[2, "estimate"])
mon_t0_est <- as.numeric(aad_mon_est[3, "estimate"])
nls.von <- nls(wt ~A*(1-(1/3)*exp(k*(t0-age)))^3,
data=df1,
start=list(A=253.6,k=.03348,t0=32.02158))
aad_von_est <- data.frame(tidy(nls.von))
von_A_est <- as.numeric(aad_von_est[1, "estimate"])
von_k_est <- as.numeric(aad_von_est[2, "estimate"])
von_t0_est <- as.numeric(aad_von_est[3, "estimate"])
If there a way to tell the loop to run through each dataframe (df1
, df2
, df3
, etc.) and then save aad_arc_B_est
, aad_arc_k_est
, and aad_arc_mx_est
afterwards?
We are hoping to have an output that would look like:
dataframe model A_est k_est t0_est
df1 nls.mon 250 10 0.14
df1 nls.von 350 12 0.13
df2 nls.mon 150 11 0.15
df2 nls.von 240 14 0.16
df3 nls.mon 220 11 0.11
df3 nls.von 450 15 0.10
We are thinking of using an index - something like for (i in dataframe)
to have it run through each dataframe, and
dataframe[i,] <- row_i
to append each row after?
But, maybe there is a better way?
Have you considered changing your code to a function? You can store all data.frames in a named list, then apply the function on each data.frame in the list and then collect the results.
library(tidyverse)
library(broom)
# changing your code to a function
my_function <- function(.df){
nls.mon <- nls(wt~A*(1-exp(k*(t0-age))),
data=.df,
start = list(A=253.6,k=.03348,t0=32.02158))
nls.von <- nls(wt ~A*(1-(1/3)*exp(k*(t0-age)))^3,
data=.df,
start= list(A=253.6,k=.03348,t0=32.02158))
# I slightly edited this part of your code
df <- bind_rows(
tidy(nls.mon) %>% mutate(model = "nls.mon"),
tidy(nls.von) %>% mutate(model = "nls.von")
) %>%
select(model, term, estimate) %>%
pivot_wider(names_from = "term", values_from = "estimate")
return(df)
}
# reading in data, the path to the data needs to be changed
df1 <- read_csv(r"{C:\Users\novot\Downloads\sample.csv}") %>%
select(-1)
df2 <- df1 %>%
filter(sex == "M")
# using map to apply the created function to each member of the list
df_out <- list("df1" = df1, "df2" = df2) %>%
map(
~my_function(.x)
) %>%
bind_rows(.id = "dataframe")
df_out
#> # A tibble: 4 x 5
#> dataframe model A k t0
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 df1 nls.mon 248. 0.0135 2.09
#> 2 df1 nls.von 246. 0.0222 32.9
#> 3 df2 nls.mon 248. 0.0135 2.09
#> 4 df2 nls.von 246. 0.0222 32.9