I have a data frame
Name Subset Type System
A00 IU00-A OP A
A00 IT00 PP A
B01 IT-01A PP B
B01 IU OP B
B03 IM-09-B LP A
B03 IM03A OP A
B03 IT-09 OP A
D09 IT OP A
D09 IM LP A
D09 IM OP A
which I have converted it to
Subset Cluster Type Cluster Name System
IU,IT OP,PP A00 A
IM,IM,IT LP, OP, OP B03, D09 A
IU,IT OP,PP B01 B
using
out = df.assign(Subset=df['Subset'].str[:2])\
.sort_values(by=df.columns.tolist())\
.groupby('Name', as_index=False)\
.agg(**{'Subset Cluster': ('Subset', ', '.join),
'Type Cluster': ('Type', ', '.join),
'System': ('System', 'first')})\
.groupby(['Subset Cluster', 'Type Cluster', 'System'], as_index=False)\
.agg(', '.join)
In this converted dataframe, I need to add another column that will give me all subsets for a particular Name.
Output Example:
Subset Cluster Type Cluster Name System Subsets
IU,IT OP,PP A00 A IU00-A,IT00
IM,IM,IT LP, OP, OP B03, D09 A IM-09-B,IM03A,IT-09,IT,IM,IM
IU,IT OP,PP B01 B IT-01A,IU
We could assign Subset Cluster
first; then use a double groupby
:
out = df.assign(**{'Subset Cluster': df['Subset'].str[:2]})\
.sort_values(by=df.columns.tolist())\
.groupby(['Name', 'System'], as_index=False)\
.agg(', '.join).rename(columns={'Type':'Type Cluster'})\
.groupby(['Subset Cluster', 'Type Cluster', 'System'], as_index=False)\
.agg(', '.join)
Output:
Subset Cluster Type Cluster System Name Subset
0 IM, IM, IT LP, OP, OP A B03, D09 IM-09-B, IM03A, IT-09, IM, IM, IT
1 IT, IU PP, OP A A00 IT00, IU00-A
2 IT, IU PP, OP B B01 IT-01A, IU