Is there a difference between the following two classes?
I know what inplace is (you don't need to do x = function(x)
but only function(x)
to modify x
if inplace is True
). But here because we return self.conv(x)
, it should not matter, right?
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
down=True,
use_act=True,
**kwargs
):
super().__init__()
self.conv = nn.Sequential((nn.Conv2d(in_channels, out_channels,
padding_mode='reflect',
**kwargs) if down else nn.ConvTranspose2d(in_channels,
out_channels, **kwargs)),
nn.InstanceNorm2d(out_channels),
(nn.ReLU() if use_act else nn.Identity()))
def forward(self, x):
return self.conv(x)
class ConvBlockInplace(nn.Module):
def __init__(
self,
in_channels,
out_channels,
down=True,
use_act=True,
**kwargs
):
super().__init__()
self.conv = nn.Sequential((nn.Conv2d(in_channels, out_channels,
padding_mode='reflect',
**kwargs) if down else nn.ConvTranspose2d(in_channels,
out_channels, **kwargs)),
nn.InstanceNorm2d(out_channels),
(nn.ReLU(inplace=True) if use_act else nn.Identity()))
def forward(self, x):
return self.conv(x)
The inplace
operations do the exact amount of computations. However, there are less memory accesses, if your task is memory bound. Then, it would matter.
I used the ptflops
flops counter to generate the following statistics
ConvBlock(
0.0 M, 100.000% Params, 0.015 GMac, 100.000% MACs,
(conv): Sequential(
0.0 M, 100.000% Params, 0.015 GMac, 100.000% MACs,
(0): Conv2d(0.0 M, 100.000% Params, 0.014 GMac, 93.333% MACs, 3, 10, kernel_size=(3, 3), stride=(1, 1), padding_mode=reflect)
(1): InstanceNorm2d(0.0 M, 0.000% Params, 0.0 GMac, 3.333% MACs, 10, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(2): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 3.333% MACs, )
)
)
Computational complexity: 0.01 GMac
Number of parameters: 280
Warning: module ConvBlockInplace is treated as a zero-op.
ConvBlockInplace(
0.0 M, 100.000% Params, 0.015 GMac, 100.000% MACs,
(conv): Sequential(
0.0 M, 100.000% Params, 0.015 GMac, 100.000% MACs,
(0): Conv2d(0.0 M, 100.000% Params, 0.014 GMac, 93.333% MACs, 3, 10, kernel_size=(3, 3), stride=(1, 1), padding_mode=reflect)
(1): InstanceNorm2d(0.0 M, 0.000% Params, 0.0 GMac, 3.333% MACs, 10, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(2): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 3.333% MACs, inplace=True)
)
)
Computational complexity: 0.01 GMac
Number of parameters: 280