I need to extract co-anomalies from a data-frame which already contains univariate anomalies.
# Libraries
library(dplyr)
library(lubridate)
library(stringr)
# Create input dataframe
DF <- data.frame(
rowID = as.factor(c(1,2,3,4,5,6,7,8)),
Start = as_datetime(c('2022-01-01 09:00:00', '2022-01-01 12:00:00', '2022-01-02 15:00:00',
'2022-01-02 23:30:00', '2022-01-03 00:10:00', '2022-01-29 00:10:00',
'2023-12-25 06:00:00', '2023-12-25 08:00:00')),
Finish = as_datetime(c('2022-01-01 11:00:00', '2022-01-01 15:00:00','2022-01-03 01:00:00',
'2022-01-02 23:50:00', '2022-01-03 03:00:00', '2022-01-31 03:00:00',
'2023-12-25 11:00:00', '2023-12-25 12:00:00')),
Process = c('Process1', 'Process2', 'Process1', 'Process2', 'Process3', 'Process3', 'Process3', 'Process3'),
Anomaly = c('Y','N','Y','Y','Y', 'Y', 'Y', 'Y')
) %>%
arrange(Start, Process) %>%
mutate(Interval = interval(Start, Finish)) %>%
as_tibble()
I'm able to successfully tag co-anomalies which occurred over similar time periods as the process of interest (Process3).
# Declare process of interest
c <- 'Process3'
# Extract co-anomalies within and between Process3
Result <- DF %>%
filter(int_overlaps(Interval, Interval[Process == c]) == TRUE) %>%
mutate(coAnomaly = ifelse(Anomaly == 'Y', 'Y', 'N')) %>%
left_join(DF, ., by = c('rowID' = 'rowID')) %>%
select(contains('.x'), coAnomaly) %>%
rename_with(~str_remove(., '.x'))
The code correctly tags co-anomalies between process 3 and other processes. Although it makes errors when detecting process 3 against itself.
Row 6 is an error, the anomaly doesn't co-occur within another Process3 or between any other process.
I'm trying to correctly tag:
You can try this approach using rowwise()
:
left_join(DF, DF %>%
rowwise() %>%
filter(any(int_overlaps(Interval, DF$Interval[which(DF$rowID!=rowID & DF$Process == c)]))) %>%
mutate(coAnomaly = ifelse(Anomaly == 'Y', 'Y', 'N')) %>%
select(rowID, coAnomaly)
)
Output:
rowID Start Finish Process Anomaly Interval coAnomaly
<fct> <dttm> <dttm> <chr> <chr> <Interval> <chr>
1 1 2022-01-01 09:00:00 2022-01-01 11:00:00 Process1 Y 2022-01-01 09:00:00 UTC--2022-01-01 11:00:00 UTC NA
2 2 2022-01-01 12:00:00 2022-01-01 15:00:00 Process2 N 2022-01-01 12:00:00 UTC--2022-01-01 15:00:00 UTC NA
3 3 2022-01-02 15:00:00 2022-01-03 01:00:00 Process1 Y 2022-01-02 15:00:00 UTC--2022-01-03 01:00:00 UTC Y
4 4 2022-01-02 23:30:00 2022-01-02 23:50:00 Process2 Y 2022-01-02 23:30:00 UTC--2022-01-02 23:50:00 UTC NA
5 5 2022-01-03 00:10:00 2022-01-03 03:00:00 Process3 Y 2022-01-03 00:10:00 UTC--2022-01-03 03:00:00 UTC NA
6 6 2022-01-29 00:10:00 2022-01-31 03:00:00 Process3 Y 2022-01-29 00:10:00 UTC--2022-01-31 03:00:00 UTC NA
rbind(
DF %>%
filter(Process==c) %>%
rowwise() %>%
filter(any(int_overlaps(Interval, DF$Interval[which(DF$rowID!=rowID & DF$Process == c)]))) %>%
mutate(coAnomaly = "within"),
DF %>%
filter(Process!=c) %>%
rowwise() %>%
filter(any(int_overlaps(Interval, DF$Interval[which(DF$rowID!=rowID & DF$Process == c)]))) %>%
mutate(coAnomaly = "between")
)
Output:
rowID Start Finish Process Anomaly Interval coAnomaly
<fct> <dttm> <dttm> <chr> <chr> <Interval> <chr>
1 7 2023-12-25 06:00:00 2023-12-25 11:00:00 Process3 Y 2023-12-25 06:00:00 UTC--2023-12-25 11:00:00 UTC within
2 8 2023-12-25 08:00:00 2023-12-25 12:00:00 Process3 Y 2023-12-25 08:00:00 UTC--2023-12-25 12:00:00 UTC within
3 3 2022-01-02 15:00:00 2022-01-03 01:00:00 Process1 Y 2022-01-02 15:00:00 UTC--2022-01-03 01:00:00 UTC between
Here is another approach, which does not depend on indicating a Process
of interest (i.e. no need for c="Process3"
.
get_overlap_IDs = function(interval,id) {
DF %>% filter(int_overlaps(interval, DF$Interval)) %>%
filter(rowID!=id) %>%
select(oID=rowID, oProcess=Process)
}
rowwise
and unnest
DF %>%
rowwise() %>%
mutate(keys = list(get_overlap_IDs(Interval, rowID))) %>%
unnest(keys)
Output:
rowID Start Finish Process Anomaly Interval oID oProcess
<fct> <dttm> <dttm> <chr> <chr> <Interval> <fct> <chr>
1 3 2022-01-02 15:00:00 2022-01-03 01:00:00 Process1 Y 2022-01-02 15:00:00 UTC--2022-01-03 01:00:00 UTC 4 Process2
2 3 2022-01-02 15:00:00 2022-01-03 01:00:00 Process1 Y 2022-01-02 15:00:00 UTC--2022-01-03 01:00:00 UTC 5 Process3
3 4 2022-01-02 23:30:00 2022-01-02 23:50:00 Process2 Y 2022-01-02 23:30:00 UTC--2022-01-02 23:50:00 UTC 3 Process1
4 5 2022-01-03 00:10:00 2022-01-03 03:00:00 Process3 Y 2022-01-03 00:10:00 UTC--2022-01-03 03:00:00 UTC 3 Process1
5 7 2023-12-25 06:00:00 2023-12-25 11:00:00 Process3 Y 2023-12-25 06:00:00 UTC--2023-12-25 11:00:00 UTC 8 Process3
6 8 2023-12-25 08:00:00 2023-12-25 12:00:00 Process3 Y 2023-12-25 08:00:00 UTC--2023-12-25 12:00:00 UTC 7 Process3