Search code examples
pythonopencvmatplotlibgraphicsdrawing

How to draw a set of points using OpenCV Python


I've got a set of points (coordinates X and Y) generated by a mathematical expression and I want to draw the resulting figure in a specific position of the screen (I'd like to determine the position in which to center the drawn figure).

I tried using the following code to test if the formula resulted in the correct figure. But now I need to draw the same contour on a pre-existing image at a specific position.

B = 185
L = 250
W = (L-B)/6
D = (L/2)-L/4

x = np.linspace(-L/2, L/2, 500)
y1 = []
y2 = []

for X in x:
    termo1 = sqrt((L**2 - 4*X**2) / (L**2 + 8*W*X + 4*W**2))
    termo2 = ((sqrt(5.5*L**2 + 11*L*W + 4*W**2) * (sqrt(3)*B*B - 2*D*sqrt(L**2 + 2*W*L + 4*W**2))
               ) / (sqrt(3)*B*L*(sqrt(5.5*L**2 + 11*L*W + 4*W**2) - 2*sqrt(L**2 + 2*W*L + 4*W**2))))
    termo3 = 1 - sqrt((L*(L**2 + 8*W*X + 4*W**2)) / (2*(L - 2*W)*X**2 +
                      (L**2 + 8*L*W - 4*W**2)*X + 2*L*W**2 + L**2*W + L**2*W + L**3))

    calculo = B/2 * termo1 * (1-termo2 * termo3)
    y1.append(calculo)

    calculo = -B/2 * termo1 * (1-termo2 * termo3)
    y2.append(calculo)



fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

plt.plot(x, y1, 'r')
plt.plot(x, y2, 'r')


plt.show()

Solution

  • You can do this by creating an onclick event; it will take the mouse cords when click and use them as an offset...I think that's what you are asking for? Though with the current plot x/y limits, it won't show up depending on where you click so I added those in the configuration of the plot.

    import numpy as np
    from math import sqrt
    import matplotlib.pyplot as plt
    import os
    import matplotlib.image as mpimg
    
    
    def onclick(event):
        global ix, iy
        ix, iy = event.xdata, event.ydata
        plt.plot(x + ix, y1+ iy, 'r')
        plt.plot(x + ix, y2+ iy, 'r')
        plt.show()
        fig.canvas.mpl_disconnect(cid)
    
        return 
    
    
    B = 185
    L = 250
    W = (L-B)/6
    D = (L/2)-L/4
    
    x = np.linspace(-L/2, L/2, 500)
    y1 = []
    y2 = []
    
    for X in x:
        termo1 = sqrt((L**2 - 4*X**2) / (L**2 + 8*W*X + 4*W**2))
        termo2 = ((sqrt(5.5*L**2 + 11*L*W + 4*W**2) * (sqrt(3)*B*B - 2*D*sqrt(L**2 + 2*W*L + 4*W**2))
                   ) / (sqrt(3)*B*L*(sqrt(5.5*L**2 + 11*L*W + 4*W**2) - 2*sqrt(L**2 + 2*W*L + 4*W**2))))
        termo3 = 1 - sqrt((L*(L**2 + 8*W*X + 4*W**2)) / (2*(L - 2*W)*X**2 +
                          (L**2 + 8*L*W - 4*W**2)*X + 2*L*W**2 + L**2*W + L**2*W + L**3))
    
        calculo = B/2 * termo1 * (1-termo2 * termo3)
        y1.append(calculo)
    
        calculo = -B/2 * termo1 * (1-termo2 * termo3)
        y2.append(calculo)
    
    
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.set_xlim([-500,500])
    ax.set_ylim([-500,500])
    ax.spines['left'].set_position('center')
    ax.spines['bottom'].set_position('zero')
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    
    
    coords = []
    cid = fig.canvas.mpl_connect('button_press_event', onclick)
    plt.show()
    

    enter image description here