I'm following this tutorial to adapt it to my needs, in this case, to perform a sql module where I need to record the data collected by a webhook from the gitlab issues.
For the database module I'm using SQLAlchemy library and PostgreSQL as database engine.
So, I would like to solve some doubts, I have regarding the use of the Pydantic library, in particular with this example
From what I've read, Pydantic is a library that is used for data validation using classes with attributes.
But I don't quite understand some things...is the integration of Pydantic strictly necessary? The purpose of using Pydantic I understand, but the integration of using Pydantic with SQLAlchemy models I don't understand.
In the tutorial, models.py
has the following content:
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String
from sqlalchemy.orm import relationship
from .database import Base
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True, index=True)
email = Column(String, unique=True, index=True)
hashed_password = Column(String)
is_active = Column(Boolean, default=True)
items = relationship("Item", back_populates="owner")
class Item(Base):
__tablename__ = "items"
id = Column(Integer, primary_key=True, index=True)
title = Column(String, index=True)
description = Column(String, index=True)
owner_id = Column(Integer, ForeignKey("users.id"))
owner = relationship("User", back_populates="items")
And schemas.py
has the following content:
from typing import Optional
from pydantic import BaseModel
class ItemBase(BaseModel):
title: str
description: Optional[str] = None
class ItemCreate(ItemBase):
pass
class Item(ItemBase):
id: int
owner_id: int
class Config:
orm_mode = True
class UserBase(BaseModel):
email: str
class UserCreate(UserBase):
password: str
class User(UserBase):
id: int
is_active: bool
items: list[Item] = []
class Config:
orm_mode = True
I know that the primary means of defining objects in Pydantic is via models and also I know that models are simply classes which inherit from BaseModel.
Why does it create ItemBase, ItemCreate and Item that inherits from ItemBase?
In ItemBase it passes the fields that are strictly necessary in Item table? and defines its type?
The ItemCreate class I have seen that it is used latter in crud.py
to create a user, in my case I would have to do the same with the incidents? I mean, I would have to create a clase like this:
class IssueCreate(BaseModel):
pass
There are my examples trying to follow the same workflow:
models.py
import sqlalchemy
from sqlalchemy import Column, Table
from sqlalchemy import Integer, String, Datetime, TIMESTAMP
from .database import Base
class Issues(Base):
__tablename__ = 'issues'
id = Column(Integer, primary_key=True)
gl_assignee_id = Column(Integer, nullable=True)
gl_id_user = Column(Integer, nullable=False)
current_title = Column(String, nullable=False)
previous_title = Column(String, nullable=True)
created_at = Column(TIMESTAMP(timezone=False), nullable=False)
updated_at = Column(TIMESTAMP(timezone=False), nullable=True)
closed_at = Column(TIMESTAMP(timezone=False), nullable=True)
action = Column(String, nullable=False)
And schemas.py
from pydantic import BaseModel
class IssueBase(BaseModel):
updated_at: None
closed_at: None
previous_title: None
class Issue(IssueBase):
id: int
gl_task_id: int
gl_assignee_id: int
gl_id_user: int
current_title: str
action: str
class Config:
orm_mode = True
But I don't know if I'm right doing it in this way, any suggestions are welcome.
The tutorial you mentioned is about FastAPI. Pydantic by itself has nothing to do with SQL, SQLAlchemy or relational databases. It is FastAPI that is showing you a way to use a relational database.
is the integration of pydantic strictly necessary [when using FastAPI]?
Yes. Pydantic is a requirement according to the documentation:
Requirements
Python 3.6+
FastAPI stands on the shoulders of giants:
Why does it create ItemBase, ItemCreate and Item that inherits from ItemBase?
Pydantic models are the way FastAPI uses to define the schemas of the data that it receives (requests) and returns (responses). ItemCreate
represent the data required to create an item. Item
represents the data that is returned when the items are queried. The fields that are common to ItemCreate
and Item
are placed in ItemBase
to avoid duplication.
In ItemBase it passes the fields that are strictly necessary in Item table? and defines its type?
ItemBase
has the fields that are common to ItemCreate
and Item
. It has nothing to do with a table. It is just a way to avoid duplication. Every field of a pydantic model must have a type, there is nothing unusual there.
in my case I would have to do the same with the incidents?
If you have a similar scenario where the schemas of the data that you receive (request) and the data that you return (response) have common fields (same name and type), you could define a model with those fields and have other models inherit from it to avoid duplication.
This could be a (probably simplistic) way of understanding FastAPI and pydantic:
FastAPI transforms requests to pydantic models. Those pydantic models are your input data and are also known as schemas (maybe to avoid confusion with other uses of the word model). You can do whatever you want with those schemas, including using them to create relational database models and persisting them.
Whatever data you want to return as a response needs to be transformed by FastAPI to a pydantic model (schema). It just happens that pydantic supports an orm_mode option that allows it to parse arbitrary objects with attributes instead of dicts. Using that option you can return a relational database model and FastAPI will transform it to the corresponding schema (using pydantic).
FastAPI uses the parsing and validation features of pydantic, but you have to follow a simple rule: the data that you receive must comply with the input schema and the data that you want to return must comply with the output schema. You are in charge of deciding whatever happens in between.