Consider the following simple example:
# E. Musk in Grunheide
set.seed(22032022)
# generate random numbers
randomNumbers <- rnorm(n = 1000, mean = 10, sd = 10)
# empirical sd
sd(randomNumbers)
#> [1] 10.34369
# histogram
hist(randomNumbers, probability = TRUE, main = "", breaks = 50)
# just for illusatration purpose
###
# empirical density
lines(density(randomNumbers), col = 'black', lwd = 2)
# theortical density
curve(dnorm(x, mean = 10, sd = 10), col = "blue", lwd = 2, add = TRUE)
###
Created on 2022-03-22 by the reprex package (v2.0.1)
Question: Is there a nice way to illustrate the empirical standard deviation (sd) in the histogram by colour? E.g. representing the inner bars by a different color, or indicating the range of the sd by an interval, i.e., [mean +/- sd], on the x-axis?
Note, if ggplot2
provides an easy solution, suggesting this would be also much appreciated.
This is similar ggplot
solution to Benson's answer, except we precompute the histogram and use geom_col
, so that we don't get any of the unwelcome stacking at the sd boundary:
# E. Musk in Grunheide
set.seed(22032022)
# generate random numbers
randomNumbers <- rnorm(n=1000, mean=10, sd=10)
h <- hist(randomNumbers, breaks = 50, plot = FALSE)
lower <- mean(randomNumbers) - sd(randomNumbers)
upper <- mean(randomNumbers) + sd(randomNumbers)
df <- data.frame(x = h$mids, y = h$density,
fill = h$mids > lower & h$mids < upper)
library(ggplot2)
ggplot(df) +
geom_col(aes(x, y, fill = fill), width = 1, color = 'black') +
geom_density(data = data.frame(x = randomNumbers),
aes(x = x, color = 'Actual density'),
key_glyph = 'path') +
geom_function(fun = function(x) {
dnorm(x, mean = mean(randomNumbers), sd = sd(randomNumbers)) },
aes(color = 'theoretical density')) +
scale_fill_manual(values = c(`TRUE` = '#FF374A', 'FALSE' = 'gray'),
name = 'within 1 SD') +
scale_color_manual(values = c('black', 'blue'), name = 'Density lines') +
labs(x = 'Value of random number', y = 'Density') +
theme_minimal()