I'm using Tensorflow/Keras 2.4.1 and I have a (unsupervised) custom metric that takes several of my model inputs as parameters such as:
model = build_model() # returns a tf.keras.Model object
my_metric = custom_metric(model.output, model.input[0], model.input[1])
model.add_metric(my_metric)
[...]
model.fit([...]) # training with fit
However, it happens that custom_metric
is very expensive so I would like it to be computed during validation only. I found this answer but I hardly understand how I can adapt the solution to my metric that uses several model inputs as parameter since the update_state
method doesn't seem flexible.
In my context, is there a way to avoid computing my metric during training, aside from writing my own training loop ? Also, I am very surprised we cannot natively specify to Tensorflow that some metrics should only be computed at validation time, is there a reason for that ?
In addition, since the model is trained to optimize the loss, and that the training dataset should not be used to evaluate a model, I don't even understand why, by default, Tensorflow computes metrics during training.
I think that the simplest solution to compute a metric only on the validation is using a custom callback.
here we define our dummy callback:
class MyCustomMetricCallback(tf.keras.callbacks.Callback):
def __init__(self, train=None, validation=None):
super(MyCustomMetricCallback, self).__init__()
self.train = train
self.validation = validation
def on_epoch_end(self, epoch, logs={}):
mse = tf.keras.losses.mean_squared_error
if self.train:
logs['my_metric_train'] = float('inf')
X_train, y_train = self.train[0], self.train[1]
y_pred = self.model.predict(X_train)
score = mse(y_train, y_pred)
logs['my_metric_train'] = np.round(score, 5)
if self.validation:
logs['my_metric_val'] = float('inf')
X_valid, y_valid = self.validation[0], self.validation[1]
y_pred = self.model.predict(X_valid)
val_score = mse(y_pred, y_valid)
logs['my_metric_val'] = np.round(val_score, 5)
Given this dummy model:
def build_model():
inp1 = Input((5,))
inp2 = Input((5,))
out = Concatenate()([inp1, inp2])
out = Dense(1)(out)
model = Model([inp1, inp2], out)
model.compile(loss='mse', optimizer='adam')
return model
and this data:
X_train1 = np.random.uniform(0,1, (100,5))
X_train2 = np.random.uniform(0,1, (100,5))
y_train = np.random.uniform(0,1, (100,1))
X_val1 = np.random.uniform(0,1, (100,5))
X_val2 = np.random.uniform(0,1, (100,5))
y_val = np.random.uniform(0,1, (100,1))
you can use the custom callback to compute the metric both on train and validation:
model = build_model()
model.fit([X_train1, X_train2], y_train, epochs=10,
callbacks=[MyCustomMetricCallback(train=([X_train1, X_train2],y_train), validation=([X_val1, X_val2],y_val))])
only on validation:
model = build_model()
model.fit([X_train1, X_train2], y_train, epochs=10,
callbacks=[MyCustomMetricCallback(validation=([X_val1, X_val2],y_val))])
only on train:
model = build_model()
model.fit([X_train1, X_train2], y_train, epochs=10,
callbacks=[MyCustomMetricCallback(train=([X_train1, X_train2],y_train))])
remember only that the callback evaluates the metrics one-shot on the data, like any metric/loss computed by default by keras on the validation_data
.
here is the running code.