I constructed and plotted a function defined by an array, according to the following code:
# set parameters
mean = np.array([0, 3])
sigma = np.array([1, .8])
weight = np.array([.4, .6])
factor = 4
points = 1000
# set limits for plot
min_plot = (mean - (factor*sigma)).min()
max_plot = (mean + (factor*sigma)).max()
# set normal distributions
d0 = stats.norm(mean[0], sigma[0])
d1 = stats.norm(mean[1], sigma[1])
# set mixed normal
data = np.array([d0.pdf(x), d1.pdf(x)])
y = np.dot(weight, data)
# displays
x = np.linspace(min_plot, max_plot, points)
plt.plot(x, y, '-', color = 'black', label='Normal mixed')
Which gave me the following plot:
Please, what would be the simplest way to integrate $y$ between two given values, for example $x=2$ and $x=4$? I am aware of scipy.integrate, but don't understand how to use it in this particular case...
You need to define a function. Then you can use some numerical method for integration of that function within the specified boundaries.
I am giving an example with scipy.integrate.quad:
from scipy.integrate import quad
from scipy import stats
# define function to be integrated:
def f(x):
mean = np.array([0, 3])
sigma = np.array([1, .8])
weight = np.array([.4, .6])
factor = 4
points = 1000
# set normal distributions
d0 = stats.norm(mean[0], sigma[0])
d1 = stats.norm(mean[1], sigma[1])
# set mixed normal
data = np.array([d0.pdf(x), d1.pdf(x)])
y = np.dot(weight, data)
return y
# integrate function from 2 to 4
quad(f, 2, 4)
returns (0.4823076558823121, 5.354690645135298e-15)
, i.e. the integral and the absolute error associated with the interval.