A while ago I asked how to make a grouped summary table: How can I group columns of descriptive statistics in R?
I'd like to do something similar to this, but a few steps further, and I'm not sure how to proceed.
Here's what I have so far:
data %>%
dplyr::filter_all(all_vars(!is.na(.))) %>%
group_by(Type.Time, Type.Perc, Grp) %>%
dplyr::summarise(mean.ms = sprintf("%.2f", mean(Time, na.rm = TRUE)),
se.ms = sprintf("%.2f", (sd(Time, na.rm = T))/sqrt(data %>% filter(Grp == 1) %>% nrow())),
mean.perc = sprintf("%.2f", mean(Percentage, na.rm = TRUE)),
se.perc = sprintf("%.2f", (sd(Percentage, na.rm = T))/sqrt(data %>% filter(Grp == 1) %>% nrow())),
) %>%
gather(key, value, mean.ms:se.perc) %>%
unite(Group, Grp, key) %>%
spread(Group, value)
This gives me the information I want, but in the wrong format and twice as many values:
| Type.Time | Type.Perc | 1_mean.ms | 1_mean.perc | 1_se.ms | 1_se.perc | 2_mean.ms | 2_mean.perc | 2_se.ms | 2_se.perc|
|-----------|-----------|-----------|-------------|---------|-----------|-----------|-------------|---------|----------|
| TType2 | PType2 | 703 | 15 | 15 | 1.4 | 573 | 8 | 22 | 1.3 |
| TType2 | PType1 | 703 | 10 | 15 | 1.8 | 573 | 13 | 22 | 3.1 |
| TType1 | PType2 | 710 | 15 | 18 | 1.4 | 622 | 8 | 29 | 1.3 |
| TType1 | PType1 | 710 | 10 | 18 | 1.8 | 622 | 13 | 29 | 3.1 |
I'd like the top grouping in my new table to be the 1 or 2 (i.e., Grp [Group]) that precedes 'mean'/'se'. Then subgroups of Type1 and Type 2, with the preceding T and P being split as the rows (ms and % respectively)... So my aim is to produce a table in this format:
| Group1 | Group2 |
|------------------------|---------------------------|
| Type1 | Type2 | Type1 | Type2 |
|------------|-----------|------------|--------------|
| M | SE | M | SE | M | SE | M | SE |
|----|-----|------|-----|-----|------|-----|------|-------|
|ms | [values calculated from 'Time' variable] |
|% | [values calculated from 'Percentage' variable] |
I hope that makes sense!
Example data:
structure(list(ID = c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L), Grp = c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), Type.Time = c("TType1",
"TType1", "TType2", "TType2", "TType1", "TType1", "TType2", "TType2",
"TType1", "TType1", "TType2", "TType2", "TType1", "TType1",
"TType2", "TType2"), Time = c(711, 711, 669, 669, 765, 765, 876, 876, 740,
740, 658, 658, 456, 456, 423, 423), Type.Perc = c("PType1",
"PType2", "PType1", "PType2", "PType1", "PType2",
"PType1", "PType2", "PType1", "PType2", "PType1",
"PType2", "PType1", "PType2", "PType1", "PType2"
), Percentage = c(8, 3, 9, 7, 19, 22, 30, 21, 10, 5, 10, 5, 8, 7,
13, 5)), row.names = c(NA, -16L), class = c("tbl_df",
"tbl", "data.frame"))
One option to configure such header groupings is with the kableExtra
package.
For the data preparation, I've made two main changes - only considering Type.Time == Type.Perc
(to avoid the excess combinations shown in the question), and calculating the SE values per Type&Group (in the example code this mixes different groupings, which I assume is not intended).
library(tidyverse)
df <- data %>%
dplyr::filter_all(all_vars(!is.na(.))) %>%
dplyr::mutate(
Type = stringr::str_extract(Type.Time, "Type[0-9]"),
Type.Perc = stringr::str_extract(Type.Perc, "Type[0-9]"),
) %>%
dplyr::filter(Type == Type.Perc) %>%
dplyr::select(-Type.Perc, -Type.Time, -ID) %>%
pivot_longer(c(Percentage, Time), names_to = "parameter") %>%
group_by(Type, Grp, parameter) %>%
dplyr::summarise(
mean = sprintf("%.2f", mean(value, na.rm = TRUE)),
se = sprintf("%.2f", (sd(value, na.rm = T))/sqrt(n())),
.groups = "drop"
) %>%
tidyr::pivot_longer(c(mean, se)) %>%
arrange(Grp, Type) %>%
tidyr::pivot_wider(id_cols = "parameter", names_from = c("Grp", "Type", "name"))
# A tibble: 2 x 9
parameter `1_Type1_mean` `1_Type1_se` `1_Type2_mean` `1_Type2_se` `2_Type1_mean`
<chr> <chr> <chr> <chr> <chr> <chr>
1 Percentage 13.50 5.50 14.00 7.00 9.00
2 Time 738.00 27.00 772.50 103.50 598.00
# ... with 3 more variables: `2_Type1_se` <chr>, `2_Type2_mean` <chr>,
# `2_Type2_se` <chr>
The values are already in the right format, and we can simply define several header groupings with add_header_above
. And kableExtra
provides plenty of additional options for modyfing the output format.
library(kableExtra)
kable(df, col.names = c("", "M", "SE", "M", "SE", "M", "SE", "M", "SE"),
align = c("l", "r", "r", "r", "r", "r", "r", "r", "r", "r"),
format = "html") %>%
kable_styling() %>%
add_header_above(c(" ", "Type1" = 2, "Type2" = 2, "Type1" = 2, "Type2" = 2)) %>%
add_header_above(c(" ", "Group1" = 4, "Group2" = 4))