I have a database with columns M1
, M2
and M3
. These M values correspond to the values obtained by each method. My idea is now to make a rank column for each of them. For M1
and M2
, the rank will be from the highest value to the lowest value and M3
in reverse. I made the output table for you to see.
df1<-structure(list(M1 = c(400,300, 200, 50), M2 = c(500,200, 10, 100), M3 = c(420,330, 230, 51)), class = "data.frame", row.names = c(NA,-4L))
> df1
M1 M2 M3
1 400 500 420
2 300 200 330
3 200 10 230
4 50 100 51
Output
> df1
M1 rank M2 rank M3 rank
1 400 1 500 1 420 4
2 300 2 200 2 330 3
3 200 3 10 4 230 2
4 50 4 100 3 51 1
Adjust rankings:
I used the code, but in a case I'm working on, my rankings looked like this:
Using rank
and relocate
:
library(dplyr)
df1 %>%
mutate(across(M1:M2, ~ rank(-.x), .names = "{.col}_rank"),
M3_rank = rank(M3)) %>%
relocate(order(colnames(.)))
M1 M1_rank M2 M2_rank M3 M3_rank
1 400 1 500 1 420 4
2 300 2 200 2 330 3
3 200 3 10 4 230 2
4 50 4 100 3 51 1
If you have duplicate values in your vector, then you have to choose a method for ties. By default, you get the average rank, but you can choose "first".
Another possibility, which is I think what you want to do, is to convert to factor and then to numeric, so that you get a only entire values (not the average).
df1 <- data.frame(M1 = c(400,300, 50, 300))
df1 %>%
mutate(M1_rankAverage = rank(-M1),
M1_rankFirst = rank(-M1, ties.method = "first"),
M1_unique = as.numeric(as.factor(rank(-M1))))
M1 M1_rankAverage M1_rankFirst M1_unique
1 400 1.0 1 1
2 300 2.5 2 2
3 50 4.0 4 3
4 300 2.5 3 2