Search code examples
pythonnumpyscipysparse-matrix

possible scipy Sparse array memory leak in python


EDIT 3: TL;DR My issue was due to my matrix not being sparse enough and also calculating the size of a sparse array incorrectly.

was hoping someone could explain to me why this is happening. I am using colab with 51 GB of memory and I need to load data from an H5 file, float32. I am able to load a test H5 file as numpy array and RAM ~ 45 GB. I loaded that in batches (21 total) and stack it. then I try to load the data into numpy convert into sparse and hstack the data and the memory explodes and I get an OOM after batch 12 or so.

this code simulates it and you can change the data size to test it on your computer. I get completely unexplainable memory increases even though when I look at the size of my variables in memory, they seem small. What is happening? what am I doing wrong?

import os, psutil
import gc
gc.enable()
from scipy import sparse
import numpy as np
all_x = None
x = (1*(np.random.rand(97406, 2048)>0.39721115241072164)).astype('float32')
x2 = sparse.csr_matrix(x)
print('GB on Memory SPARSE ', x2.data.nbytes/ 10**9)
print('GB on Memory NUMPY ', x.nbytes/ 10**9)
print('sparse to dense mat ratio', x2.data.nbytes/ x.nbytes)
print('_____________________')
for k in range(8):
  if all_x is None:
    all_x = x2
  else:
    all_x = sparse.hstack([all_x, x2])
  print('GB on Memory ALL SPARSE ', all_x.data.nbytes/ 10**9)
  print('GB USED BEFORE GC', psutil.Process(os.getpid()).memory_info().rss/ 10**9) 
  gc.collect()
  print('GB USED AFTER GC', psutil.Process(os.getpid()).memory_info().rss/ 10**9) 
  print('_____________________')
GB on Memory SPARSE  0.481035332
GB on Memory NUMPY  0.797949952
sparse to dense mat ratio 0.6028389760464576
_____________________
GB on Memory ALL SPARSE  0.481035332
GB USED BEFORE GC 4.62065664
GB USED AFTER GC 4.6206976
_____________________
GB on Memory ALL SPARSE  0.962070664
GB USED BEFORE GC 8.473133056
GB USED AFTER GC 8.473133056
_____________________
GB on Memory ALL SPARSE  1.443105996
GB USED BEFORE GC 12.325183488
GB USED AFTER GC 12.325183488
_____________________
GB on Memory ALL SPARSE  1.924141328
GB USED BEFORE GC 17.140740096
GB USED AFTER GC 17.140740096
_____________________
GB on Memory ALL SPARSE  2.40517666
GB USED BEFORE GC 20.512710656
GB USED AFTER GC 20.512710656
_____________________
GB on Memory ALL SPARSE  2.886211992
GB USED BEFORE GC 22.920142848
GB USED AFTER GC 22.920142848
_____________________
GB on Memory ALL SPARSE  3.367247324
GB USED BEFORE GC 29.660889088
GB USED AFTER GC 29.660889088
_____________________
GB on Memory ALL SPARSE  3.848282656
GB USED BEFORE GC 33.99727104
GB USED AFTER GC 33.99727104
_____________________

EDIT: I stacked a list in numpy hstack and it works fine

import os, psutil
import gc
gc.enable()
from scipy import sparse
import numpy as np
all_x = None
x = (1*(np.random.rand(97406, 2048)>0.39721115241072164)).astype('float32')
x2 = sparse.csr_matrix(x)
print('GB on Memory SPARSE ', x2.data.nbytes/ 10**9)
print('GB on Memory NUMPY ', x.nbytes/ 10**9)
print('sparse to dense mat ratio', x2.data.nbytes/ x.nbytes)
print('_____________________')

all_x = np.hstack([x]*21)

print('GB on Memory ALL SPARSE ', all_x.data.nbytes/ 10**9)
print('GB USED BEFORE GC', psutil.Process(os.getpid()).memory_info().rss/ 10**9) 
gc.collect()
print('GB USED AFTER GC', psutil.Process(os.getpid()).memory_info().rss/ 10**9) 
print('_____________________')

output

GB on Memory SPARSE  0.480956104
GB on Memory NUMPY  0.797949952
sparse to dense mat ratio 0.6027396866113227
_____________________
GB on Memory ALL SPARSE  16.756948992
GB USED BEFORE GC 38.169387008
GB USED AFTER GC 38.169411584
_____________________

but when I do the same with sparse matrix I get an OOM. according to the bytes the sparse matrix should be smaller.

import os, psutil
import gc
gc.enable()
from scipy import sparse
import numpy as np
all_x = None
x = (1*(np.random.rand(97406, 2048)>0.39721115241072164)).astype('float32')
x2 = sparse.csr_matrix(x)
print('GB on Memory SPARSE ', x2.data.nbytes/ 10**9)
print('GB on Memory NUMPY ', x.nbytes/ 10**9)
print('sparse to dense mat ratio', x2.data.nbytes/ x.nbytes)
print('_____________________')

all_x = sparse.hstack([x2]*21)

print('GB on Memory ALL SPARSE ', all_x.data.nbytes/ 10**9)
print('GB USED BEFORE GC', psutil.Process(os.getpid()).memory_info().rss/ 10**9) 
gc.collect()
print('GB USED AFTER GC', psutil.Process(os.getpid()).memory_info().rss/ 10**9) 
print('_____________________')

but when i do above it returns OOM error

EDIT 2 it seems I was calculating the true size of the sparse matrix incorrectly. it can be calculated using

def bytes_in_sparse(a):
  return  a.data.nbytes + a.indptr.nbytes + a.indices.nbytes

the true comparison between the dense and sparse arrays are

GB on Memory SPARSE  0.962395268
GB on Memory NUMPY  0.797949952
sparse to dense mat ratio 1.2060847495357703

Once I use sparse.hstack the two variables become different types of sparse matrices.

all_x, x2

outputs

(<97406x4096 sparse matrix of type '<class 'numpy.float32'>'
    with 240476696 stored elements in COOrdinate format>,
 <97406x2048 sparse matrix of type '<class 'numpy.float32'>'
    with 120238348 stored elements in Compressed Sparse Row format>)

Solution

  • With smaller dimensions so I don't hang my computer

    In [50]: x = (1 * (np.random.rand(974, 204) > 0.39721115241072164)).astype("float32")
    In [51]: x.nbytes
    Out[51]: 794784
    

    THe csr and approximate memory use:

    In [52]: M = sparse.csr_matrix(x)
    In [53]: M.data.nbytes + M.indices.nbytes + M.indptr.nbytes
    Out[53]: 960308
    

    hstack actually uses the coo format:

    In [54]: Mo = M.tocoo()
    In [55]: Mo.data.nbytes + Mo.row.nbytes + Mo.col.nbytes
    Out[55]: 1434612
    

    Combining 10 copies - nbytes increases by 10:

    In [56]: xx = np.hstack([x]*10)
    In [57]: xx.shape
    Out[57]: (974, 2040)
    

    Same with sparse:

    In [58]: MM = sparse.hstack([M] * 10)
    In [59]: MM.shape
    Out[59]: (974, 2040)
    In [60]: xx.nbytes
    Out[60]: 7947840
    In [61]: MM
    Out[61]: 
    <974x2040 sparse matrix of type '<class 'numpy.float32'>'
        with 1195510 stored elements in Compressed Sparse Row format>
    In [62]: M
    Out[62]: 
    <974x204 sparse matrix of type '<class 'numpy.float32'>'
        with 119551 stored elements in Compressed Sparse Row format>
    In [63]: MM.data.nbytes + MM.indices.nbytes + MM.indptr.nbytes
    Out[63]: 9567980
    

    A sparse density of

    In [65]: M.nnz / np.prod(M.shape)
    Out[65]: 0.6016779401699078
    

    does not save memory. 0.1 or smaller is a good working density if you want to both save memory and computation time (especially matrix multiplication).

    In [66]: (x@x.T).shape
    Out[66]: (974, 974)
    In [67]: timeit(x@x.T).shape
    10.1 ms ± 31.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    In [68]: (M@M.T).shape
    Out[68]: (974, 974)
    In [69]: timeit(M@M.T).shape
    220 ms ± 91.8 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)