I have the following Isabelle/HOL theorem I'd like to prove:
lemma involution:
"∀P h. (∀x. ¬P x ⟶ P (h x)) ⟶ (∃x. P x ∧ P (h (h x)))"
but I have so far not found the correct inference rules to prove it. I believe it follows from directly from inference rule applications since metis
can prove it trivially.
My proof script has only the following:
apply (rule allI; rename_tac P; rule allI; rename_tac h; rule impI)
apply (rule exI; rule conjI)
leaving me with the goal:
proof (prove)
goal (2 subgoals):
- ⋀P h. ∀x. ¬ P x ⟶ P (h x) ⟹
P (?x17 P h)
- ⋀P h. ∀x. ¬ P x ⟶ P (h x) ⟹
P (h (h (?x17 P h)))
after which I'm quite stumped as to how to proceed. I may need some invocation of the law of excluded middle, I tried both:
P x \/ ~ P x
(P x /\ ~ P (h x)) \/ ~(P x /\ ~P (h x))
to no avail.
I am more familiar with Coq than Isabelle/HOL but even there I could not prove it (even with the additional assumption that the argument type for P
is inhabited, and the classic
axiom).
Any clues would be much appreciated.
First of all, as you already mentioned, your lemma can be trivially proved by some of the Isabelle's built-in proof methods, e.g., blast
in Isabelle2021-1. However, since I guess you are looking for a more pedagogical answer, I'll elaborate a bit on it.
Before tackling the proof of a non-trivial result, it's often useful to have a pen-and-paper proof sketch first. Here's the one I got off the top of my head (perhaps there's a simpler one, but for illustration purposes I think it will suffice):
My proof is by case distinction. Let a
by an arbitrary but fixed value. Then, the following table shows all the cases to consider and an associated witness that satisfies the conclusion:
Case # P a P (h a) P (h (h a)) P (h (h (h a))) P (h (h (h (h a)))) Witness
----------------------------------------------------------------------------------
1 T ? T ? ? a
2 T F -----> T ? ? a
3 T T F ---------> T ? h a
4 F -> T ? T ? h a
5 F -> T F ---------> T ? h a
6 F -> T T F -------------> T h (h a)
In the table above, T
, F
and ?
stands for True
, False
and "don't care" respectively, and a dashed arrow represents an instantiation of the premise ∀x. ¬P x ⟶ P (h x)
with a specific value of x
. This concludes our proof sketch.
Regarding an Isabelle/HOL proof for your lemma, I think a few remarks are in order:
Since the outermost universal quantifiers are superfluous, I'll remove them from the lemma statement and use free variables instead.
*_tac
tactics are considered obsolete nowadays, and Isabelle/Isar (i.e., structured) proofs are strongly preferred over apply
-scripts (except for the experimental stages of a proof). Please refer to the Isabelle/Isar Reference Manual for further details.
Now, please find below a structured proof for your lemma, based on the proof sketch above. For pedagogical purposes, I tried to break down the proof to the most elementary steps and included inline comments in the code in order to aid the reader:
lemma involution:
assumes "∀x. ¬P x ⟶ P (h x)"
shows "∃x. P x ∧ P (h (h x))"
proof -
fix a (* an arbitrary but fixed value *)
show ?thesis
proof (cases "P a")
case True
then consider
("Case #1") "P (h (h a))"
| ("Case #2") "¬P (h a)"
| ("Case #3") "P (h a)" and "¬P (h (h a))"
by blast
then show ?thesis
proof cases
case "Case #1"
from ‹P a› and ‹P (h (h a))› have "P a ∧ P (h (h a))"
by (intro conjI)
then show ?thesis
by (intro exI) (* `exI` using `a` as witness *)
next
case "Case #2"
have "¬P (h a)"
by fact (* assumption of case #2 *)
moreover have "¬P (h a) ⟶ P (h (h a))"
by (rule assms [THEN spec]) (* instantiation of premise with `h a` *)
ultimately have "P (h (h a))"
by (rule rev_mp) (* modus ponens *)
(* NOTE: The three steps above can be replaced by `then have "P (h (h a))" using assms by simp` *)
from ‹P a› and ‹P (h (h a))› have "P a ∧ P (h (h a))"
by (intro conjI)
then show ?thesis
by (intro exI) (* `exI` using `a` as witness *)
next
case "Case #3"
then have "P (h (h (h a)))" (* use of shortcut explained above *)
using assms by simp (* instantiation of premise with `h (h a)` *)
from ‹P (h a)› and ‹P (h (h (h a)))› have "P (h a) ∧ P (h (h (h a)))"
by (intro conjI)
then show ?thesis
by (intro exI) (* `exI` using `h a` as witness *)
qed
next
case False (* i.e., `¬P a` *)
then have "P (h a)"
using assms by simp (* instantiation of premise with `a` *)
then consider
("Case #4") "P (h (h (h a)))"
| ("Case #5") "¬P (h (h a))"
| ("Case #6") "P (h (h a))" and "¬P (h (h (h a)))"
by blast
then show ?thesis
sorry (* proof omitted, similar to cases #1, #2, and #3 *)
qed
qed