I'm new with the function curve_fit()
from scipy.optimize
, but I can't get it to work.
I've a barplot, really simple, and I would like to create a curve that "fit" it.
My code :
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
x = [i for i in range(15)]
y = [1,3,4,6,8,4,2,1,5,8,6,5,5,8,5]
plt.bar(x,y,color='yellow')
plt.show()
# that is working
curve_fit(x,y) # I want the curve to fit the barplot
# but it returns an error...
plt.show()
result : error because of curve_fit.
If you could help me, that would be really great.
curve_fit
You need to pass a fitting function to curve_fit
. Note that the line you've drawn is quite overfit for such a small sample and would require a high-order polynomial (even a cubic fit won't look like that).
Here is an example of using a quartic fitting function f_curve4
:
# curve_fit requires x and y to be arrays (not lists)
x = np.arange(15)
y = np.array([1, 3, 4, 6, 8, 4, 2, 1, 5, 8, 6, 5, 5, 8, 5])
plt.bar(x, y, color='cyan')
# fit
f_curve4 = lambda x, a, b, c, d, e: a*x**4 + b*x**3 + c*x**2 + d*x + e
popt, pcov = curve_fit(f_curve4, x, y)
plt.plot(x, f_curve4(x, *popt), '--', label='fit')
# forecast
x_new = np.arange(max(x), max(x) + 2)
plt.plot(x_new, f_curve4(x_new, *popt), 'r:', label='forecast')
polyfit
Alternatively use polyfit
and just pass deg=N
without manually defining an Nth-order fitting function:
plt.bar(x, y, color='cyan')
# fit
f_poly4 = np.polyfit(x, y, deg=4)
x_fit = np.linspace(min(x), max(x), 100)
y_fit = np.polyval(f_poly4, x_fit)
plt.plot(x_fit, y_fit, '--', label='fit')
# forecast
x_new = np.linspace(max(x), max(x) + 1, 10)
y_new = np.polyval(f_poly4, x_new)
plt.plot(x_new, y_new, 'r:', lw=2, label='forecast')
interp1d
Depending on your use case, consider interpolating with interp1d
instead of fitting a polynomial. Here is an example of using cubic interpolation function f_interp
:
plt.bar(x, y, color='cyan')
f_interp = interpolate.interp1d(x, y, kind='cubic')
x2 = np.linspace(min(x), max(x), 100)
plt.plot(x2, f_interp(x2), '--')