I'm having some issues trying to do exercise 4.5 of 'Concrete Semantics' in Isar:
inductive S :: "alpha list ⇒ bool" where
Sε : "S []" |
aSb : "S m ⟹ S (a#m @ [b])" |
SS : "S l ⟹ S r ⟹ S (l @ r)"
inductive T :: "alpha list ⇒ bool" where
Tε : "T []" |
TaTb : "T l ⟹ T r ⟹ T (l @ a#(r @ [b]))"
lemma TS: "T w ⟹ S w"
proof (induction w rule: T.induct)
case Tε
show ?case by (simp add:Sε)
case (TaTb l r) show ?case using TaTb.IH(1) (* This being S l, which allows us to case-split on l using S.induct *)
proof (cases "l" rule: S.induct)
case Sε
then show ?case by (simp add: TaTb.IH(2) aSb)
next case (aSb m)
I'm getting Illegal schematic variable(s) in case "aSb"⌂
Also I find suspicious that in Sε I cannot refer to ?case
, I get Unbound schematic variable: ?case
. I'm thinking that maybe the problem is that I have a cases in an induction?
As summarized by the comments, you have two problems:
cases "l" rule: S.induct
makes little sense and you should either use a nested induction induction l rule: S.induct
or a case distinction cases l rule: S.cases
In cases you should use ?thesis
instead of cases as the Isabelle/jEdit outline tells you (you can click on that thing to insert it into the buffer!). That way you would also have given a name to all variable in the case TaTb
.
So you probably want something like:
lemma TS: "T w ⟹ S w"
proof (induction w rule: T.induct)
case Tε
show ?case by (simp add:Sε)
next
case (TaTb l r a b) show ?case using TaTb.IH(1)
proof (cases "l" rule: S.cases)
case Sε
then show ?thesis sorry
next
case (aSb m a b)
then show ?thesis sorry
next
case (SS l r)
then show ?thesis sorry
qed
qed