Given the tensor below of size torch.Size([22])
tensor([-20.1659, -19.7022, -17.4124, -16.7115, -16.4696, -15.6848, -15.5201, -14.5384, -12.5017, -12.4227, -11.0946, -10.7844, -10.5467, -9.3933, -4.2351, -4.0521, -3.8844, -3.8668, -3.7337, -3.7002, -3.6242, -3.5820])
and the below historgram:
hist = torch.histogram(tensor, 5)
hist
torch.return_types.histogram(
hist=tensor([3., 5., 5., 1., 8.]),
bin_edges=tensor([-20.1659, -16.8491, -13.5323, -10.2156, -6.8988, -3.5820]))
For each value of the tensor, how to create a one hot encoding that corresponds to its bin number, so that the output is a tensor of size torch.Size([22, 5])
You can use torch.repeat_interleave
import torch
bins = torch.tensor([3, 5, 5, 1, 8])
one_hots = torch.eye(len(bins))
one_hots = torch.repeat_interleave(one_hots, bins, dim=0)
print(one_hots)
tensor([[1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.]])