I am trying to write a sklearn based feature extraction pipeline. My pipeline code idea could be splitted in few parts
from sklearn.base import BaseEstimator, TransformerMixin
class FeatureExtractor(BaseEstimator, TransformerMixin):
"""This is the parent class for all feature extractors."""
def __init__(self, raw_data = {}):
self.raw_data = raw_data
def fit(self, X, y=None):
return self
# A decorator to assign order of feature extraction within fearure extractor classes
def feature_order(order):
def order_assignment(to_func):
to_func.order = order
return to_func
return order_assignment
class ChilldFeatureExtractor1(FeatureExtractor):
"""This is the one of the child feature extractor class."""
def __init__(self, raw_data = {}):
super().__init__(raw_data)
self.raw_data = raw_data
@feature_order(1)
def foo_plus_one(self):
return self.raw_data['foo'] + 1
# This feature extractor depends on value populated in previous feature extractor
@feature_order(2)
def foo_plus_one_plus_one(self):
return self.raw_data['foo_plus_one'] + 1
def transform(self):
functions = sorted(
#get a list of extractor functions with attribute order
[
getattr(self, field) for field in dir(self)
if hasattr(getattr(self, field), "order")
],
#sort the feature extractor functions by their order
key = (lambda field: field.order)
)
for func in functions:
feature_name = func.__name__
feature_value = func()
self.raw_data[feature_name] = feature_value
return self.raw_data
Testing this code a small input:
if __name__ == '__main__':
raw_data = {'foo': 1, 'bar': 2}
fe = ChilldFeatureExtractor1(raw_data)
print(fe.transform())
Gives error:
Traceback (most recent call last):
File "/Users/temporaryadmin/deleteme.py", line 55, in <module>
print(fe.transform())
File "/Users/temporaryadmin/deleteme.py", line 37, in transform
[
File "/Users/temporaryadmin/deleteme.py", line 39, in <listcomp>
if hasattr(getattr(self, field), "order")
File "/Users/temporaryadmin/opt/miniconda3/envs/voutopia/lib/python3.8/site-packages/sklearn/base.py", line 450, in _repr_html_
raise AttributeError("_repr_html_ is only defined when the "
AttributeError: _repr_html_ is only defined when the 'display' configuration option is set to 'diagram'
However when I don't inherit sklearn classes in base class ie. class FeatureExtractor():
then I get proper output:
{'foo': 1, 'bar': 2, 'foo_plus_one': 2, 'foo_plus_one_plus_one': 3}
Any pointer on this?
The error traceback indicates where this goes wrong: self
has an attribute _repr_html_
listed in its __dir__
, but trying to access it with getattr
throws that ValueError
, as shown in the source link from @maxskoryk's answer.
One fix is to give a default value in the getattr
call:
def transform(self):
functions = sorted(
#get a list of extractor functions with attribute order
[
getattr(self, field, None) for field in dir(self)
if hasattr(getattr(self, field, None), "order")
],
#sort the feature extractor functions by their order
key = (lambda field: field.order),
)
...
You could also just limit to attributes not starting with an underscore, or any other reasonable way to limit which attributes get checked.