@njit
def cumutrapz(x:np.array, y:np.array):
return np.append(0, [
np.trapz(y=y[i-2:i], x=x[i-2:i]) for i in range(2, len(x) + 1)]).cumsum()
from numba import float64
@jitclass([
('a', float64[:]),
('b', float64[:]),
('c', float64[:]),
])
class Testaroo(object):
def __init__(self, a, b):
self.a = a
self.b = b
self.c = np.zeros(len(self.a), dtype=np.float64)
def set_c(self):
self.c = cumutrapz(self.a, self.b)
testaroo = Testaroo(
np.arange(50, dtype=np.float64), np.sin(np.arange(50, dtype=np.float64)))
testaroo.set_c()
The above fails, but the following two very similar examples work:
cumutrapz(np.arange(50, dtype=np.float64), np.sin(np.arange(50, dtype=np.float64)))
and
from numba import float64
@jitclass([
('a', float64[:]),
('b', float64[:]),
('c', float64[:]),
])
class Testaroo(object):
def __init__(self, a, b):
self.a = a
self.b = b
self.c = np.zeros(len(self.a), dtype=np.float64)
def set_c(self):
self.c = (self.a * self.b).cumsum()
testaroo = Testaroo(
np.arange(50, dtype=np.float64), np.sin(np.arange(50, dtype=np.float64)))
testaroo.set_c()
This latter example will work for me for now, but I'd like to know if there's a way to get the cumutrapz
function working inside of a jitclass
.
I'm using numba version '0.53.1'.
Carefully reading though the long error message you can find:
No implementation of function Function(<function trapz at 0x7f7e9b21e5e0>)
found for signature:
>>> trapz(y=array(float64, 1d, A), x=array(float64, 1d, A))
...
reshape() supports contiguous array only
Arrays with format A (any) are not necessarily contiguous.
You can ensure the function deals with contiguous arrays only:
@njit([nb.float64[::1](nb.float64[::1], nb.float64[::1])])
def cumutrapz(x, y):
...
Then a new error appears:
Invalid use of type(CPUDispatcher(<function MyTestCase.test_cumutrapz.<locals>.cumutrapz at 0x7f8e15a841f0>))
with parameters (array(float64, 1d, A), array(float64, 1d, A))
Known signatures:
* (array(float64, 1d, C), array(float64, 1d, C)) -> array(float64, 1d, C)
...
self.c = cumutrapz(self.a, self.b)
^
So the arrays in the class are not contiguous.
In order to ensure they are, you can change the class specification to:
@jitclass([
('a', nb.float64[::1]),
('b', nb.float64[::1]),
('c', nb.float64[::1]),
])
Now it works (tested with Numba 0.54.0).