I have been trying to fetch the metadata from a KDB+ Database using python, basically, I installed a library called qpython
and using this library we connect and query the KDB+ Database.
I want to store the metadata for all the appropriate cols for a table/view in KDB+ Database using python. I am unable to separate the metadata part, despite trying myriad different approaches.
Namely a few to typecast the output to list/tuple, iterating using for
, et cetera.
from qpython import qconnection
def fetch_metadata_from_kdb(params):
try:
kdb_connection_obj = qconnection.QConnection(host=params['host'], port=params['port'], username=params['username'], password=params['password'])
kdb_connection_obj.open()
PREDICATE = "meta[{}]".format(params['table'])
metadata = kdb_connection_obj(PREDICATE)
kdb_connection_obj.close()
return metadata
except Exception as error_msg:
return error_msg
def fetch_tables_from_kdb(params):
try:
kdb_connection_obj = qconnection.QConnection(host=params['host'], port=params['port'], username=params['username'], password=params['password'])
kdb_connection_obj.open()
tables = kdb_connection_obj("tables[]")
views = kdb_connection_obj("views[]")
kdb_connection_obj.close()
return [table.decode() for table in list(tables)], [view.decode() for view in list(views)]
except Exception as error_msg:
return error_msg
parms_q = {'host':'localhost', 'port':5010,
'username':'kdb', 'password':'kdb', 'table':'testing'}
print("fetch_tables_from_kdb:", fetch_tables_from_kdb(parms_q), "\n")
print("fetch_metadata_from_kdb:", fetch_metadata_from_kdb(parms_q), "\n")
The output which I am currently getting is as follows;
fetch_tables_from_kdb: (['testing'], ['viewname'])
fetch_metadata_from_kdb: [(b'time',) (b'sym',) (b'price',) (b'qty',)]![(b'p', b'', b'') (b's', b'', b'') (b'f', b'', b'') (b'j', b'', b'')]
I am not able to separate the columns part and the metadata part. How to store only the metadata for the appropriate column for a table/view in KDB using python?
The metadata that you have returned from kdb is correct but is being displayed in python as a kdb dictionary format which I agree is not very useful.
If you pass the pandas=True flag into your qconnection call then qPython will parse kdb datastructures, such as a table into pandas data structures or sensible python types, which in your case looks like it will be more useful.
Please see an example below - kdb setup (all on localhost)
$ q -p 5000
q)testing:([]date:.z.d+0 1 2;`g#sym:`abc`def`ghi;num:`s#10 20 30)
q)testing
date sym num
------------------
2022.01.31 abc 10
2022.02.01 def 20
2022.02.02 ghi 30
q)meta testing
c | t f a
----| -----
date| d
sym | s g
num | j s
Python code
from qpython import qconnection
#create and open 2 connections to kdb process - 1 without pandas flag and one
q = qconnection.QConnection(host="localhost", port=5000)
qpandas = qconnection.QConnection(host="localhost", port=5000, pandas=True)
q.open()
qpandas.open()
#see what is returned with a q table
print(q("testing"))
[(8066, b'abc', 10) (8067, b'def', 20) (8068, b'ghi', 30)]
#the data is a qPython data object
type(q("testing"))
qpython.qcollection.QTable
#whereas using the pandas=True flag a dataframe is returned.
print(qpandas("testing"))
date sym num
0 2022-01-31 b'abc' 10
1 2022-02-01 b'def' 20
2 2022-02-02 b'ghi' 30
#This is the same for the meta of a table
print(q("meta testing"))
[(b'date',) (b'sym',) (b'num',)]![(b'd', b'', b'') (b's', b'', b'g') (b'j', b'', b's')]
print(qpandas("meta testing"))
t f a
c
b'date' d b'' b''
b'sym' s b'' b'g'
b'num' j b'' b's'
With the above you can now access the columns and rows using pandas (the b'num' etc is the qPython way of expressing a backtick `
Also now you have the ability to now use the DataFrame.info()
to extract datatypes if you are more intrested in the python data structure rather than the kdb data structure/types. qPython will convert the q types to sensible python types automatically.
qpandas("testing").info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 3 non-null datetime64[ns]
1 sym 3 non-null object
2 num 3 non-null int64
dtypes: datetime64[ns](1), int64(1), object(1)
memory usage: 200.0+ bytes