Search code examples
ggplot2colorsgeom-bar

Manually adjusting colors in ggplot (geom_bar)


I want to (manually) chance the color of my bar plot. Right now, I used fill=group to determine the color scheme. However, I don't like the bright pink color and want to change this manually in a purple color, the rest of the colors are fine. How can I change color without altering the rest of the graph?

I used the command below for my bar plot:

ggplot(Dispersion3, aes(Batch.location, Number, fill=group))+
  geom_bar(stat='identity')+
  scale_x_discrete(guide = guide_axis(angle = 45))+
  facet_grid(~factor(Season, levels=c("Winter1", "Spawn1", "Forage", "Winter2", "Spawn2"), labels = c("Winter-19/20", "Spawn-20", "Forage-20", "Winter-20/21", "Spawn-21")))+
  scale_fill_discrete(name = "Distance from batch", labels = c("> 40 km", "30 - 40 km", "20 - 30 km", "10 - 20 km", "5 - 10 km", "< 5 km"))

[![enter image description here][1]][1]

Data=Dispersion3

structure(list(Transmitter = c("A69-1602-54311", "A69-1602-54311", 
"A69-1602-54312", "A69-1602-54312", "A69-1602-54313", "A69-1602-54313", 
"A69-1602-54314", "A69-1602-54314", "A69-1602-54315", "A69-1602-54315", 
"A69-1602-54316", "A69-1602-54316", "A69-1602-54317", "A69-1602-54317", 
"A69-1602-54318", "A69-1602-54318", "A69-1602-54319", "A69-1602-54319", 
"A69-1602-54320", "A69-1602-54320", "A69-1602-54321", "A69-1602-54322", 
"A69-1602-54323", "A69-1602-54323", "A69-1602-54324", "A69-1602-54325", 
"A69-1602-54326", "A69-1602-54327", "A69-1602-54328", "A69-1602-59744", 
"A69-1602-59745", "A69-1602-59745", "A69-1602-59745", "A69-1602-59745", 
"A69-1602-59745", "A69-1602-59746", "A69-1602-59746", "A69-1602-59747", 
"A69-1602-59747", "A69-1602-59747", "A69-1602-59747", "A69-1602-59747", 
"A69-1602-59748", "A69-1602-59748", "A69-1602-59748", "A69-1602-59748", 
"A69-1602-59749", "A69-1602-59750", "A69-1602-59750", "A69-1602-59750", 
"A69-1602-59751", "A69-1602-59751", "A69-1602-59752", "A69-1602-59752", 
"A69-1602-59753", "A69-1602-59753", "A69-1602-59753", "A69-1602-59753", 
"A69-1602-59753", "A69-1602-59754", "A69-1602-59755", "A69-1602-59755", 
"A69-1602-59755", "A69-1602-59755", "A69-1602-59755", "A69-1602-59756", 
"A69-1602-59756", "A69-1602-59757", "A69-1602-59757", "A69-1602-59758", 
"A69-1602-59758", "A69-1602-59758", "A69-1602-59758", "A69-1602-59758", 
"A69-1602-59759", "A69-1602-59759", "A69-1602-59759", "A69-1602-59759", 
"A69-1602-59760", "A69-1602-59760", "A69-1602-59761", "A69-1602-59761", 
"A69-1602-59761", "A69-1602-59761", "A69-1602-59761", "A69-1602-59762", 
"A69-1602-59762", "A69-1602-59763", "A69-1602-59763", "A69-1602-59763", 
"A69-1602-59763", "A69-1602-59763", "A69-1602-59764", "A69-1602-59764", 
"A69-1602-59764", "A69-1602-59764", "A69-1602-59764", "A69-1602-59765", 
"A69-1602-59765", "A69-1602-59766", "A69-1602-59766", "A69-1602-59766", 
"A69-1602-59766", "A69-1602-59767", "A69-1602-59767", "A69-1602-59767", 
"A69-1602-59767", "A69-1602-59767", "A69-1602-59768", "A69-1602-59768", 
"A69-1602-59768", "A69-1602-59768", "A69-1602-59768", "A69-1602-59769", 
"A69-1602-59769", "A69-1602-59769", "A69-1602-59769", "A69-1602-59769", 
"A69-1602-59770", "A69-1602-59770", "A69-1602-59771", "A69-1602-59771", 
"A69-1602-59772", "A69-1602-59772", "A69-1602-59773", "A69-1602-59773", 
"A69-1602-59773", "A69-1602-59773", "A69-1602-59773", "A69-1602-59774", 
"A69-1602-59774", "A69-1602-59775", "A69-1602-59775", "A69-1602-59775", 
"A69-1602-59775", "A69-1602-59775", "A69-1602-59776", "A69-1602-59776", 
"A69-1602-59776", "A69-1602-59776", "A69-1602-59776", "A69-1602-59777", 
"A69-1602-59777", "A69-1602-59777", "A69-1602-59777", "A69-1602-59777", 
"A69-1602-59778", "A69-1602-59778", "A69-1602-59779", "A69-1602-59779", 
"A69-1602-59779", "A69-1602-59779", "A69-1602-59780", "A69-1602-59780", 
"A69-1602-59781", "A69-1602-59781", "A69-1602-59781", "A69-1602-59781", 
"A69-1602-59781", "A69-1602-59782", "A69-1602-59782", "A69-1602-59783", 
"A69-1602-59783", "A69-1602-59783", "A69-1602-59783", "A69-1602-59783", 
"A69-1602-59784", "A69-1602-59784", "A69-1602-59784", "A69-1602-59784", 
"A69-1602-59785", "A69-1602-59786", "A69-1602-59787", "A69-1602-59787", 
"A69-1602-59787", "A69-1602-59787", "A69-1602-59787", "A69-1602-59788", 
"A69-1602-59788", "A69-1602-59788", "A69-1602-59788", "A69-1602-59788", 
"A69-1602-59789", "A69-1602-59789", "A69-1602-59789", "A69-1602-59789", 
"A69-1602-59789", "A69-1602-59790", "A69-1602-59790", "A69-1602-59791", 
"A69-1602-59791", "A69-1602-59792", "A69-1602-59793", "A69-1602-59793", 
"A69-1602-59793", "A69-1602-59793", "A69-1602-59794", "A69-1602-59794", 
"A69-1602-59795", "A69-1602-59795", "A69-1602-59796", "A69-1602-59796", 
"A69-1602-59796", "A69-1602-59796", "A69-1602-59796", "A69-1602-59797", 
"A69-1602-59797", "A69-1602-59798", "A69-1602-59798", "A69-1602-59799", 
"A69-1602-59799", "A69-1602-59799", "A69-1602-59799", "A69-1602-59799", 
"A69-1602-59800", "A69-1602-59800", "A69-1602-59801", "A69-1602-59801", 
"A69-1602-59801", "A69-1602-59801", "A69-1602-59801", "A69-1602-59802", 
"A69-1602-59802", "A69-1602-59803", "A69-1602-59803", "A69-1602-59803", 
"A69-1602-59803", "A69-1602-59803", "A69-1602-59804", "A69-1602-59804", 
"A69-1602-59805", "A69-1602-59805", "A69-1602-59806", "A69-1602-59806", 
"A69-1602-59807", "A69-1602-59807", "A69-1602-59807", "A69-1602-59808", 
"A69-1602-59808", "A69-1602-59809", "A69-1602-59809", "A69-1602-59810", 
"A69-1602-59810", "A69-1602-59810", "A69-1602-59811", "A69-1602-59811", 
"A69-1602-59812", "A69-1602-59812", "A69-1602-59813", "A69-1602-59813", 
"A69-1602-59814", "A69-1602-59814", "A69-1602-59814", "A69-1602-59814", 
"A69-1602-59815", "A69-1602-59815", "A69-1602-59815", "A69-1602-59815", 
"A69-1602-59816", "A69-1602-59817", "A69-1602-59819", "A69-1602-59819", 
"A69-1602-59820", "A69-1602-59821", "A69-1602-59821", "A69-1602-59822", 
"A69-1602-59823", "A69-1602-59823", "A69-1602-59824", "A69-1602-59825", 
"A69-1602-59826", "A69-1602-59826", "A69-1602-59826", "A69-1602-59827", 
"A69-1602-59827", "A69-1602-59828", "A69-1602-59828", "A69-1602-59828", 
"A69-1602-59828", "A69-1602-59828", "A69-1602-59829", "A69-1602-59829", 
"A69-1602-59830", "A69-1602-59831", "A69-1602-59831", "A69-1602-59831", 
"A69-1602-59831", "A69-1602-59831", "A69-1602-59832", "A69-1602-59833", 
"A69-1602-59834", "A69-1602-59835", "A69-1602-59835", "A69-1602-59835", 
"A69-1602-59835", "A69-1602-59835", "A69-1602-59836", "A69-1602-59836", 
"A69-1602-59837", "A69-1602-59837", "A69-1602-59838", "A69-1602-59839", 
"A69-1602-59839", "A69-1602-59840", "A69-1602-59840", "A69-1602-59841", 
"A69-1602-59841", "A69-1602-59842", "A69-1602-59843", "A69-1602-59843", 
"A69-1602-59843"), Season = c("Forage", "Spawn2", "Forage", "Spawn2", 
"Forage", "Spawn2", "Forage", "Spawn2", "Forage", "Spawn2", "Forage", 
"Spawn2", "Forage", "Spawn2", "Forage", "Spawn2", "Forage", "Spawn2", 
"Forage", "Spawn2", "Spawn2", "Spawn2", "Forage", "Spawn2", "Spawn2", 
"Spawn2", "Spawn2", "Spawn2", "Spawn2", "Winter1", "Forage", 
"Spawn1", "Spawn2", "Winter1", "Winter2", "Spawn1", "Winter1", 
"Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", "Spawn1", 
"Spawn2", "Winter1", "Winter2", "Spawn1", "Forage", "Winter1", 
"Winter2", "Spawn1", "Winter1", "Spawn1", "Winter1", "Forage", 
"Spawn1", "Spawn2", "Winter1", "Winter2", "Winter1", "Forage", 
"Spawn1", "Spawn2", "Winter1", "Winter2", "Spawn1", "Winter1", 
"Spawn1", "Winter1", "Forage", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Forage", "Spawn1", "Winter1", "Winter2", "Spawn1", 
"Winter1", "Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", 
"Spawn1", "Winter1", "Forage", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", 
"Spawn1", "Winter1", "Spawn1", "Spawn2", "Winter1", "Winter2", 
"Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", "Forage", 
"Spawn1", "Spawn2", "Winter1", "Winter2", "Forage", "Spawn1", 
"Spawn2", "Winter1", "Winter2", "Spawn1", "Winter1", "Spawn1", 
"Winter1", "Spawn1", "Winter1", "Forage", "Spawn1", "Spawn2", 
"Winter1", "Winter2", "Spawn1", "Winter1", "Forage", "Spawn1", 
"Spawn2", "Winter1", "Winter2", "Forage", "Spawn1", "Spawn2", 
"Winter1", "Winter2", "Forage", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Spawn1", "Winter1", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Spawn1", "Winter1", "Forage", "Spawn1", "Spawn2", 
"Winter1", "Winter2", "Spawn1", "Winter1", "Forage", "Spawn1", 
"Spawn2", "Winter1", "Winter2", "Forage", "Spawn1", "Spawn2", 
"Winter1", "Winter1", "Winter1", "Forage", "Spawn1", "Spawn2", 
"Winter1", "Winter2", "Forage", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", 
"Spawn1", "Winter1", "Spawn1", "Winter1", "Winter1", "Forage", 
"Spawn1", "Winter1", "Winter2", "Spawn1", "Winter1", "Spawn1", 
"Winter1", "Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", 
"Spawn1", "Winter1", "Spawn1", "Winter1", "Forage", "Spawn1", 
"Spawn2", "Winter1", "Winter2", "Spawn1", "Winter1", "Forage", 
"Spawn1", "Spawn2", "Winter1", "Winter2", "Spawn1", "Winter1", 
"Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", "Spawn1", 
"Winter1", "Spawn1", "Winter1", "Spawn1", "Winter1", "Forage", 
"Spawn1", "Winter1", "Spawn1", "Winter1", "Spawn1", "Winter1", 
"Forage", "Spawn1", "Winter1", "Spawn1", "Winter1", "Spawn1", 
"Winter1", "Spawn1", "Winter1", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Spawn1", "Spawn2", "Winter1", "Winter2", "Winter1", 
"Winter1", "Spawn1", "Winter1", "Winter1", "Spawn1", "Winter1", 
"Winter1", "Spawn1", "Winter1", "Winter1", "Winter1", "Spawn1", 
"Winter1", "Winter2", "Spawn1", "Winter1", "Forage", "Spawn1", 
"Spawn2", "Winter1", "Winter2", "Forage", "Spawn1", "Winter1", 
"Forage", "Spawn1", "Spawn2", "Winter1", "Winter2", "Winter1", 
"Winter1", "Winter1", "Forage", "Spawn1", "Spawn2", "Winter1", 
"Winter2", "Spawn1", "Winter1", "Spawn1", "Winter1", "Winter1", 
"Spawn1", "Winter1", "Spawn1", "Winter1", "Spawn1", "Winter1", 
"Winter1", "Forage", "Spawn1", "Winter1"), Batch.location = structure(c(8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
3L, 3L, 3L, 3L, 3L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Den Oever", "Medemblik", 
"Enkhuizen", "Stavoren", "Lemmer", "Ketelhaven", "Lelystad", 
"Markerwadden"), class = "factor"), `max distance` = c(2.09861304168527, 
2.52186862327424, 2.09861304168527, 2.09861304168527, 2.06773203256743, 
2.09861304168527, 2.09861304168527, 2.52186862327424, 2.06773203256743, 
2.09861304168527, 2.09861304168527, 2.09861304168527, 0.207052365336615, 
2.09861304168527, 2.09861304168527, 2.09861304168527, 2.09861304168527, 
2.27221768516951, 2.09861304168527, 2.52186862327424, 2.09861304168527, 
2.52186862327424, 2.09861304168527, 2.52186862327424, 0.207052365336615, 
2.52186862327424, 0.207052365336615, 2.09861304168527, 2.09861304168527, 
2.55827101689345, 2.55827101689345, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 29.6222537752041, 2.55827101689345, 
0, 2.55827101689345, 2.55827101689345, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 13.6078290874409, 2.55827101689345, 0, 4.07525961740185, 
14.7442644338329, 0, 14.7442644338329, 14.7442644338329, 14.7442644338329, 
14.7442644338329, 0, 0, 0, 0, 0, 0, 3.67357267678004, 14.7442644338329, 
31.8861260921355, 31.8861260921355, 14.7442644338329, 14.7442644338329, 
0, 3.67357267678004, 31.8861260921355, 0, 0, 0, 0, 14.1891547888285, 
3.67357267678004, 13.6078290874409, 53.9604508112108, 39.9833461407132, 
13.6078290874409, 1.60673719243843, 1.60673719243843, 18.8755486336044, 
37.1477457727004, 37.1477457727004, 1.60673719243843, 0, 2.93233568869472, 
1.60673719243843, 0, 1.60673719243843, 0, 18.8755486336044, 0, 
0, 2.93233568869472, 2.93233568869472, 2.93233568869472, 2.93233568869472, 
2.93233568869472, 2.93233568869472, 13.6078290874409, 13.6078290874409, 
2.93233568869472, 0, 0, 2.93233568869472, 2.93233568869472, 2.93233568869472, 
2.93233568869472, 0, 2.93233568869472, 2.93233568869472, 2.93233568869472, 
2.93233568869472, 0, 0, 0, 0, 0, 22.0689264444271, 22.0689264444271, 
21.6573593129425, 0, 0, 0, 0, 21.6573593129425, 21.6573593129425, 
0, 0, 27.1352921526802, 27.1352921526802, 0, 21.6573593129425, 
21.6573593129425, 0, 0, 0, 0, 0, 17.2740564735626, 0, 18.8755486336044, 
0, 0, 0, 0, 22.0689264444271, 0, 34.0126665945869, 31.5589537736477, 
31.5589537736477, 22.1776822695344, 0, 22.1776822695344, 31.389797027264, 
44.5900705020792, 43.3976533332777, 31.389797027264, 43.3976533332777, 
14.8691518778998, 14.8691518778998, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 2.55827101689345, 14.5827981937255, 
15.7089215225545, 14.5827981937255, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 0, 2.55827101689345, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 0, 0, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 2.55827101689345, 2.55827101689345, 
2.55827101689345, 2.55827101689345, 17.5361439864551, 0, 17.5361439864551, 
31.5589537736477, 0, 17.5361439864551, 17.5361439864551, 0, 0, 
30.1390542608465, 31.5589537736477, 17.5361439864551, 0, 22.1776822695344, 
38.0419064223524, 22.1776822695344, 26.4325286192825, 38.0419064223524, 
0, 0, 0, 17.5361439864551, 17.5361439864551, 0, 0, 17.5361439864551, 
17.5361439864551, 0, 17.5361439864551, 0, 0, 0, 30.1390542608465, 
0, 30.1390542608465, 0, 1.48108027988229, 1.48108027988229, 17.6313494625488, 
30.1390542608465, 18.5565893657245, 29.6361491030785, 0, 17.5361439864551, 
7.13622984428536, 1.48108027988229, 22.1776822695344, 22.1776822695344, 
35.5520908555987, 21.0650298743005, 59.7128353277037, 31.5589537736477, 
17.5361439864551, 17.5361439864551, 2.25656968299054, 2.25656968299054, 
2.25656968299054, 2.25656968299054, 0, 0, 0, 0, 52.5465855455931, 
21.2040865946565, 2.25656968299054, 0, 0, 0, 21.2040865946565, 
0, 0, 0, 0, 38.2165754172804, 0, 0, 0, 0, 0, 31.8861260921355, 
21.2040865946565, 21.2040865946565, 21.2040865946565, 33.4969050950683, 
26.4925842074686, 0, 0, 0, 2.25656968299054, 2.25656968299054, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.25656968299054, 0, 21.2040865946565, 
21.2040865946565, 21.2040865946565, 21.2040865946565, 21.2040865946565, 
21.2040865946565, 21.2040865946565, 64.1655009571088, 43.8757964958802, 
0, 21.6264847096301, 21.6264847096301, 21.2040865946565), group = structure(c(6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 3L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 4L, 6L, 6L, 6L, 4L, 6L, 
4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 4L, 2L, 2L, 4L, 4L, 
6L, 6L, 2L, 6L, 6L, 6L, 6L, 4L, 6L, 4L, 1L, 2L, 4L, 6L, 6L, 4L, 
2L, 2L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 3L, 3L, 3L, 6L, 6L, 6L, 6L, 3L, 3L, 6L, 6L, 
3L, 3L, 6L, 3L, 3L, 6L, 6L, 6L, 6L, 6L, 4L, 6L, 4L, 6L, 6L, 6L, 
6L, 3L, 6L, 2L, 2L, 2L, 3L, 6L, 3L, 2L, 1L, 1L, 2L, 1L, 4L, 4L, 
6L, 6L, 6L, 6L, 6L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 4L, 6L, 4L, 2L, 6L, 4L, 4L, 6L, 6L, 2L, 2L, 4L, 6L, 
3L, 2L, 3L, 3L, 2L, 6L, 6L, 6L, 4L, 4L, 6L, 6L, 4L, 4L, 6L, 4L, 
6L, 6L, 6L, 2L, 6L, 2L, 6L, 6L, 6L, 4L, 2L, 4L, 3L, 6L, 4L, 5L, 
6L, 3L, 3L, 2L, 3L, 1L, 2L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 1L, 3L, 6L, 6L, 6L, 6L, 3L, 6L, 6L, 6L, 6L, 2L, 6L, 6L, 6L, 
6L, 6L, 2L, 3L, 3L, 3L, 2L, 3L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
1L, 1L, 6L, 3L, 3L, 3L), .Label = c("6", "5", "4", "3", "2", 
"1"), class = "factor"), Number = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1)), row.names = c(NA, -311L), class = c("tbl_df", 
"tbl", "data.frame"))


  [1]: https://i.sstatic.net/5D1CE.png

Solution

  • The default colors that scale_fill_discrete() uses for 6 levels can be generated using scales::hue_pal():

    > my_colors = scales::hue_pal()(6)
    > my_colors
    [1] "#F8766D" "#B79F00" "#00BA38" "#00BFC4" "#619CFF" "#F564E3"
    

    The last color corresponds to the bright pink that you don't like. You can change it to purple:

    my_colors[6] = "#C77CFF"
    

    Then, use scale_fill_manual to use this set of colors:

    ggplot(Dispersion3, aes(Batch.location, Number, fill=group))+
      geom_bar(stat='identity')+
      scale_x_discrete(guide = guide_axis(angle = 45))+
      facet_grid(~factor(Season, levels=c("Winter1", "Spawn1", "Forage", "Winter2", "Spawn2"), labels = c("Winter-19/20", "Spawn-20", "Forage-20", "Winter-20/21", "Spawn-21")))+
      scale_fill_manual(
        name = "Distance from batch", 
        labels = c("> 40 km", "30 - 40 km", "20 - 30 km", "10 - 20 km", "5 - 10 km", "< 5 km"),
        values = my_colors
        )
    

    ggplot with desired colors