This is a plotly question as I wish to have the interactive graph. I am trying to make two sets of grouped bargraphs on top of each other in which one of the sets is not filled but with a thick line and the other set is filled.
This is my dummy dataset:
from numpy import random
import pandas as pd
list = []
for species in ['C1', 'C2', 'C3', 'C4']:
for catalyst in ['CHA', 'SAPO', 'MOF','None']:
for add in [True, False]:
new_data = {'species': species,
'catalyst': catalyst,
'energy': random.uniform(low=0.0, high=1.0, size=None),
'with_additive': add}
list.append(new_data)
df = pd.DataFrame(list)
df
Next, in plotly I manage to make bargraphs one over the other like this
fig = px.bar(df,
x='species',
y='energy',
facet_row ='with_additive',
color = 'catalyst',
barmode ='group',
pattern_shape="with_additive", pattern_shape_sequence=[".", ""]
)
fig
I can also make them in the same plot, but then the two sets end up side by side as in the following:
fig = px.bar(df,
x='species',
y='energy',
#facet_row ='with_additive',
color = 'catalyst',
barmode ='group',
pattern_shape="with_additive", pattern_shape_sequence=[".", ""]
)
fig
Then I tried to add the second set as a trace, but do not mange to make that grouped:
fig = px.bar(df[df.with_additive==True],
x='species',
y='energy',
#facet_row ='with_additive',
color = 'catalyst',
barmode ='group',
)
fig.add_trace(
go.Bar(x=df[df.with_additive==True].species, y=df[df.with_additive==True].energy,
#color = 'surface',
alignmentgroup ='species',
base='overlay',
)
)
So, what I am missing is: How to get one of the sets with black line contour, and get how to the two sets perfetcly ontop of each other as in the followig matplotlib examples:
df_pivot1 = pd.pivot_table(
df[df.with_additive==True],
values="energy",
index="catalyst",
columns="species",
)
df_pivot2 = pd.pivot_table(
df[df.with_additive==False],
values="energy",
index="catalyst",
columns="species",
)
fig, ax = plt.subplots(figsize=(7,5))
df_pivot1.plot(kind="bar", ax=ax)
df_pivot2.plot(kind="bar", edgecolor='black', linewidth=2, ax=ax, fill=False)
handles, labels = ax.get_legend_handles_labels()
handle_list =handles[0:5]
label_list= labels[0:4]
label_list.append('no additive')
plt.legend(handle_list, label_list, loc='upper center', bbox_to_anchor=(0.5, 1.1), ncol=5)
You can do it like this:
1. Build two figures fig1=px.bar()
and fig2=px.bar()
2. Make the necessary changes to fig2
to make the traces stand out with no color and a black line with:
fig2.update_traces(marker_color = 'rgba(0,0,0,0)', marker_line_color = 'black')
3. Change the trace names of fig2
with:
fig2.for_each_trace(lambda t: t.update(name = t.name + ' No additives'))
3. Set up a new figure fig=go.Figure(fig1.data)
4. Add the edited traces to fig
from fig2
using fig.add_traces(fig2.data)
And that's it:
from numpy import random
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
list = []
for species in ['C1', 'C2', 'C3', 'C4']:
for catalyst in ['CHA', 'SAPO', 'MOF','None']:
for add in [True, False]:
new_data = {'species': species,
'catalyst': catalyst,
'energy': random.uniform(low=0.0, high=1.0, size=None),
'with_additive': add}
list.append(new_data)
df = pd.DataFrame(list)
fig1 = px.bar(df[df.with_additive==True],
x='species',
y='energy',
facet_row ='with_additive',
color = 'catalyst',
barmode ='group',
# pattern_shape="with_additive", pattern_shape_sequence=[".", ""]
)
fig2 = px.bar(df[df.with_additive==False],
x='species',
y='energy',
facet_row ='with_additive',
color = 'catalyst',
barmode ='group',
)
fig2.update_traces(marker_color = 'rgba(0,0,0,0)', marker_line_color = 'black')
fig2.for_each_trace(lambda t: t.update(name = t.name + ' No addititves'))
fig = go.Figure(fig1.data)
fig.add_traces(fig2.data)
fig.show()