So I'm building a very simple model using tensorflow that gives x+1 as output (prediction). I'll deploy this model on android application so I convert it to tflite format. Building model
Python
import tensorflow as tf
# Create a simple Keras model.
x = [1,2,3,4,5,6,7,8,9,10]
y = [2,3,4,5,6,7,8,9,10,11]
model = tf.keras.models.Sequential([tf.keras.layers.Dense(units=1, input_shape=[1])])
model.compile(optimizer='sgd', loss='mean_squared_error')
model.fit(x, y, epochs=50)
path_file = 'saved_model/hello_world_tensorflow'
tf.saved_model.save(model, path_file)
import pathlib
# Convert the model.
converter = tf.lite.TFLiteConverter.from_saved_model(path_file)
tflite_model = converter.convert()
tflite_model_file = pathlib.Path('model1.tflite')
tflite_model_file.write_bytes(tflite_model)
Using model in Python code for getting output
import numpy as np
import tensorflow as tf
# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="model1.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
input_shape = input_details[0]['shape']
print(input_shape)
input_data = np.array([[3]], dtype=np.float32) # 3 is the input here
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
# The function `get_tensor()` returns a copy of the tensor data.
# Use `tensor()` in order to get a pointer to the tensor.
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data,input_data)
Using model in Java Code (MainActivity.java File ) android
package ar.labs.androidml;
import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;
import org.tensorflow.lite.DataType;
import org.tensorflow.lite.support.tensorbuffer.TensorBuffer;
import java.nio.ByteBuffer;
import ar.labs.androidml.ml.Model1;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Button btn= findViewById(R.id.button);
btn.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
try{
EditText inputEditText;
inputEditText = findViewById(R.id.editTextNumberDecimal);
Float data= Float.valueOf(inputEditText.getText().toString());
ByteBuffer byteBuffer= ByteBuffer.allocateDirect(1*4);
byteBuffer.putFloat(data);
Model1 model = Model1.newInstance(getApplicationContext());
// Creates inputs for reference.
TensorBuffer inputFeature0 = TensorBuffer.createFixedSize(new int[]{1, 1}, DataType.FLOAT32);
inputFeature0.loadBuffer(byteBuffer);
// Runs model inference and gets result.
Model1.Outputs outputs = model.process(inputFeature0);
TensorBuffer outputFeature0 = outputs.getOutputFeature0AsTensorBuffer();
// Releases model resources if no longer used.
TextView tv= findViewById(R.id.textView);
float[] data1=outputFeature0.getFloatArray();
tv.setText(outputFeature0.getDataType().toString());
tv.setText(String.valueOf(data1[0]));
model.close();
}
catch (Exception e)
{
Toast.makeText(getApplicationContext(),"Issue...",Toast.LENGTH_LONG).show();
}
}
});
}
}
Python code:
Java Code
Why the outputs are behaving this way in java file?
Solved by myself! Add the new line so that the bytes are returned in LITTLE_ENDIAN. By default, the order of a ByteBuffer object is BIG_ENDIAN. Finally, the order method in is invoked to modify the byte order. The ByteOrder.nativeOrder() method returns the LITTLE_ENDIAN byte order. The order method creates a new buffer modifiedBuffer, and sets the byte order to LITTLE_ENDIAN.
ByteBuffer byteBuffer= ByteBuffer.allocateDirect(1*4);
byteBuffer.order(ByteOrder.nativeOrder()); // new line added
byteBuffer.putFloat(data);
TfLite saved models only support Little Endian format by default.