Search code examples
pythontensorflowkerascomputer-visionsemantic-segmentation

Using Tensorflow random rotation and cropping sequentially throws errors


I am trying to edit this code on Keras page: https://keras.io/examples/vision/deeplabv3_plus/. One thing I want to do is to add an augmentation function for the dataset. This is what I wrote:

def image_augmentation(img):
    img = tf.image.random_flip_left_right(img)
    img = tf.image.random_flip_up_down(img)
    img = tf.image.random_brightness(img, 0.2)
    img = tf.image.random_crop(value = img, size=(2, 2))
    img = tf.keras.preprocessing.image.random_rotation(img, 90, row_axis=0, col_axis=1,channel_axis=2)

However, the last two lines throw errors that I'm having trouble with.

This line img = tf.image.random_crop(value = img, size=(2, 2)) throws this error:

ValueError: Dimensions must be equal, but are 3 and 2 for '{{node random_crop/GreaterEqual}} = GreaterEqual[T=DT_INT32](random_crop/Shape, random_crop/size)' with input shapes: [3], [2].

This line img = tf.keras.preprocessing.image.random_rotation(img, 90, row_axis=0, col_axis=1,channel_axis=2) throws this error:

AttributeError: in user code:

    File "<ipython-input-3-8db8a894e0d0>", line 41, in data_loader  *
        mask = image_process(mask_list, mask=True)
    File "<ipython-input-3-8db8a894e0d0>", line 28, in image_process  *
        img = image_augmentation(img)
    File "<ipython-input-7-037af66af3d3>", line 18, in image_augmentation  *
        img = tf.keras.preprocessing.image.random_rotation(img, 90, row_axis=0, col_axis=1,channel_axis=2)
    File "/usr/local/lib/python3.7/dist-packages/keras_preprocessing/image/affine_transformations.py", line 56, in random_rotation  *
        x = apply_affine_transform(x, theta=theta, channel_axis=channel_axis,
    File "/usr/local/lib/python3.7/dist-packages/keras_preprocessing/image/affine_transformations.py", line 323, in apply_affine_transform  *
        x = np.rollaxis(x, channel_axis, 0)
    File "<__array_function__ internals>", line 6, in rollaxis  **
        
    File "/usr/local/lib/python3.7/dist-packages/numpy/core/numeric.py", line 1290, in rollaxis
        n = a.ndim

    AttributeError: 'Tensor' object has no attribute 'ndim'

Solution

  • For the 1st error in the line,

    img = tf.image.random_crop(value = img, size=(2, 2))
    

    In the documentation of the method tf.image.random_crop it is clearly mentioned that,

    If a dimension should not be cropped, pass the full size of that dimension. For example, RGB images can be cropped with size = [crop_height, crop_width, 3].

    So, in order to fix the error,

    img = tf.image.random_crop(value = img, size=(2, 2, 3))
    

    For the 2nd error in the line,

    img = tf.keras.preprocessing.image.random_rotation(img, 90, row_axis=0, col_axis=1,channel_axis=2)
    

    This method requires that img is a NumPy array ( tensor ) and not a Tensor object. Also, the method returns the rotated image in the form of a NumPy array.

    If the desired output of the function image_augmentation is a ndarray then you just need to make the following change,

    img = tf.keras.preprocessing.image.random_rotation(img.numpy(), 90, row_axis=0, col_axis=1,channel_axis=2)
    

    Or else, if the desired output type is a Tensor, we can use the tfa.image.rotate method, that comes from the TensorFlow Addons package,

    import math
    import random 
    
    upper = 90 * (math.pi/180.0) # degrees -> radian
    lower = 0 * (math.pi/180.0)
    
    def rand_degree():
        return random.uniform( lower , upper )
    
    def image_augmentation(img):
        ...
        img = tfa.image.rotate( img , rand_degree() )
        # img is a Tensor
        return img