I have a dataframe like as shown below
df = pd.DataFrame(
{'sub_code' : [np.nan, 'CSE01', np.nan,
'CSE02', 'CSE03', 'CSE02',
'CSE03', 'CSE02'],
'stud_level' : [101, 101, 101, 101,
101, 101, 101, 101],
'grade' : ['STA','STA','PSA','STA','STA','SSA','PSA','QSA']})
I would like to do the below
a) Fill NA's in sub_code
column by referring grade
column.
b) For ex: grade STA
has corresponding sub_code
non-NA values in row 1,3 and 4
(row 0 has NA value
)
c) Copy the very 1st non-NA (CSE01
) value from grade
column and put it in sub_code
column (row 0
)
I tried the below
m = df['sub_code'].isna()
df.loc[m, 'sub_code'] = np.where(df.loc[m, 'grade'].ne(np.nan), df['sub_code'], 'not filled')
I expect my output to be like as below
df['sub_code'] =df.groupby(['grade'])['sub_code'].bfill().ffill()
sub_code stud_level grade
0 CSE01 101 STA
1 CSE01 101 STA
2 CSE03 101 PSA
3 CSE02 101 STA
4 CSE03 101 STA
5 CSE02 101 SSA
6 CSE03 101 PSA
7 CSE02 101 QSA