I'm trying to pick up C, using an esp32. While looking at exactly how FreeRTOS works, I found the following page regarding how to use the tasks, and best practices etc.
https://www.freertos.org/implementing-a-FreeRTOS-task.html
According to this page, to prevent starvation, tasks should be event based. Regarding what I am trying to achieve, I will try to provide a very simplified example.
Background
I have a LCD screen, which should display data from a sensor. The data shown on the LCD will be done using a task, which according to the documentation, should never exit and should be event driven to prevent starvation.
I have a way of controlling the data shown on the LCD screen, which would be a rotary encoder. This encoder can be clicked, which should refresh the sensor's data.
Question
How would I implement the event based tasks, which are described on the FreeRTOS page, in this specific context? I had a look at the documentation and the "simple" example projects on their github, but as a beginner within C and embedded, they were extremely overwhelming.
Simple demo code
void update_sensor_task(void *pvParameters)
{
// Ensure the task keeps on running
for( ; ; )
{
if(event_update_sensor) // How would I be able to notify the task that this should be run?
{
// update the data
}
}
// Tasks should not be returning, but if they happen to do so, ensure a clean exit
vTaskDelete(NULL);
}
void screen_temperature_task(void *pvParameters)
{
for(; ;)
{
if(event_sensor_updated)
{
// Update the lcd screen with the new data
}
}
vTaskDelete(NULL);
}
void on_rotary_clicked(void *pvParameters)
{
// Notify the sensor task that it should be updating?
}
EDIT:
By using what has been marked as the correct answer, I have managed to get it to work by implementing it the following way:
/* Queue used to send and receive the data */
QueueHandle_t xStructQueue = NULL;
/* Struct which shall be used to hold and pass around the data for the LCD screen*/
struct LcdData
{
int current_temp;
int current_humidity;
} xLcdData;
void initialize_queues(void)
{
xLcdData.current_humidity = 0;
xLcdData.current_temp = 0;
xStructQueue = xQueueCreate(
/* The maximum number of items the queue can hold*/
5,
/* The size of each struct, which the queue should be able to hold */
sizeof( xLcdData )
);
if(xStructQueue == NULL)
{
ESP_LOGE(TAG, "Queue has not been initialized successfully");
}
}
void screen_temperature_task_simplified(void *pvParameters)
{
int counter = 0;
for(; ;)
{
struct LcdData xReceivedStructure;
BaseType_t result;
result = xQueueReceive(xStructQueue, &xReceivedStructure, ( TickType_t ) 10);
if(result == pdPASS)
{
counter = counter + 1;
char snum_current_counter[12];
sprintf(snum_current_counter, "%d", counter);
i2c_lcd1602_clear (lcd_info);
i2c_lcd1602_write_string (lcd_info, snum_current_counter);
}
}
vTaskDelete(NULL);
}
void update_sensor_struct(void)
{
xLcdData.current_temp = DHT11_read().temperature;
xLcdData.current_humidity = DHT11_read().humidity;
// Log the results in the console
printf("Temperature is %d \n", xLcdData.current_temp);
printf("Humidity is %d\n", xLcdData.current_humidity);
ESP_LOGI(TAG, "Data has been updated");
}
void on_rotary_clicked_simplified()
{
ESP_LOGI(TAG, "Rotary encoder has been clicked!");
// Update the struct which holds the data
update_sensor_struct();
/* Send the entire struct to the queue */
xQueueSend(
/* The handle of the queue */
xStructQueue,
/* The adress of the struct which should be sent */
(void *) &xLcdData,
/* Block time of 0 says don't block if the queue is already full.
Check the value returned by xQueueSend() to know if the message
was sent to the queue successfully. */
( TickType_t ) 0
);
}
I use FRTOS and event driven development.
The typical flow here would be:
for(;;)
{
BaseType_t result;
result = xQueueReceive(LCD_Event_Queue, &someLCDEvent, QUEUE_TIMEOUT);
if (result == pdPASS)
{
/* We have new event data in someLCDEvent; Use that data to update the LCD */
}
else
{
/* No new event, do some brief idle-time processing if necessary */
}
}
In brief, wait up to QUEUE_TIMEOUT time for a new event to arrive.
If a new event arrives within that timeframe successfully, then process the data in that event and update your screen.
If a new event does not arrive, you have an opportunity to do some other maintenance work.
Designing and defining the structure-type of someLCDEvent, and putting data into the queue is a big topic, and will depend a lot on your specific project.