In these sample data, users place orders of certain random values at random dates in time. I've successfully implemented a method to calculate the percentile rank of each value regarding the last 180 days of orders of that same user.
However, for large values of n
the last groupby
line of code runs very slow (1M rows run in about 1m30s) Does anyone have a suggestion on how to improve computing time?
import pandas as pd
import numpy as np
from scipy.stats import percentileofscore
#percentile rank function
def rank(x, kind):
return percentileofscore(x, score = x.iloc[-1], kind = kind)
#sample data
n = 10000
orders = pd.DataFrame({
'user':np.random.randint(1, 100, size = n),
'value':np.random.randn(n),
'date':np.random.choice( pd.date_range('1/1/2019', periods=730,
freq='D'), n)
})
orders_sort = orders.sort_values(by = ['user', 'date']).reset_index(drop =True)
#group by time window percentile rank - SLOW!
orders_sort.groupby('user')[['value', 'date']].rolling('180d', on = 'date').apply(lambda x: rank(x, kind = 'mean'))
value date
user
1 0 50.000000 2019-01-03
1 75.000000 2019-01-10
2 83.333333 2019-01-12
3 87.500000 2019-01-17
4 10.000000 2019-01-22
... ... ...
99 9995 19.565217 2020-11-23
9996 64.583333 2020-11-26
9997 39.583333 2020-12-04
9998 54.000000 2020-12-05
9999 6.000000 2020-12-12
[10000 rows x 2 columns]
you can leverage the parameter raw=True
in the apply to pass a numpy array instead of Series. You need to slightly change your function to work with an array.
def rank_np(x, kind):
return percentileofscore(x, score = x[-1], kind = kind) #no iloc as x is an array
then like you did bu with the parameter raw:
orders_sort.groupby('user')[['value', 'date']]\
.rolling('180d', on = 'date')\
.apply(lambda x: rank_np(x, kind = 'mean'), raw=True) #see here
I get a speed up of 6.5 time faster with n=10K or 50K, not sure how it behaves for n=1M rows