I want to create GUI which should automatically clean data in csv file once selected and plot superimposed PDF & histogram graph. I have uploaded basic python program which generates the required graph but I am unbale to convert it into interface. I guess, only "open file" & "plot" buttons would suffice the requirement. image- want to retrieve data from 'N'th column (13) only with skipping top 4 rows
I am basically from metallurgy background and trying my hands in this field. Any help would be greatly appreciated
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
raw_data = pd.read_csv("D:/Project/Python/NDC/Outlier_ND/800016_DAT.csv",skiprows=4,header=None)
clean = pd.DataFrame(raw_data)
data1 = clean.iloc[:, [13]]
Q1 = data1.quantile(0.25)
Q3 = data1.quantile(0.75)
IQR = Q3 - Q1
data_IQR = data1[~((data1 < (Q1 - 1.5 * IQR)) |(data1 > (Q3 + 1.5 * IQR))).any(axis=1)]
data_IQR.shape
print(data1.shape)
print(data_IQR.shape)
headerList = ['Actual_MR']
data_IQR.to_csv(r'D:\Project\Python\NDC\Outlier_ND\800016_DAT_IQR.csv', header=headerList, index=False)
data = pd.read_csv("D:/Project/Python/NDC/Outlier_ND/800016_DAT_IQR.csv")
mean, sd = norm.fit(data)
plt.hist(data, bins=25, density=True, alpha=0.6, facecolor = '#2ab0ff', edgecolor='#169acf', linewidth=0.5)
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mean, sd)
plt.plot(x, p, 'red', linewidth=2)
title = " Graph \n mean: {:.2f} and SD: {:.2f}".format(mean, sd)
plt.title(title)
plt.xlabel('MR')
plt.ylabel('Pr')
plt.show()
Following code demo how PySimpleGUI to work with matplotlib, detail please find all remark in script.
import math, random
from pathlib import Path
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
import PySimpleGUI as sg
# 1. Define the class as the interface between matplotlib and PySimpleGUI
class Canvas(FigureCanvasTkAgg):
"""
Create a canvas for matplotlib pyplot under tkinter/PySimpleGUI canvas
"""
def __init__(self, figure=None, master=None):
super().__init__(figure=figure, master=master)
self.canvas = self.get_tk_widget()
self.canvas.pack(side='top', fill='both', expand=1)
# 2. create PySimpleGUI window, a fixed-size Frame with Canvas which expand in both x and y.
font = ("Courier New", 11)
sg.theme("DarkBlue3")
sg.set_options(font=font)
layout = [
[sg.Input(expand_x=True, key='Path'),
sg.FileBrowse(file_types=(("ALL CSV Files", "*.csv"), ("ALL Files", "*.*"))),
sg.Button('Plot')],
[sg.Frame("", [[sg.Canvas(background_color='green', expand_x=True, expand_y=True, key='Canvas')]], size=(640, 480))],
[sg.Push(), sg.Button('Exit')]
]
window = sg.Window('Matplotlib', layout, finalize=True)
# 3. Create a matplotlib canvas under sg.Canvas or sg.Graph
fig = Figure(figsize=(5, 4), dpi=100)
ax = fig.add_subplot()
canvas = Canvas(fig, window['Canvas'].Widget)
# 4. initial for figure
ax.set_title(f"Sensor Data")
ax.set_xlabel("X axis")
ax.set_ylabel("Y axis")
ax.set_xlim(0, 1079)
ax.set_ylim(-1.1, 1.1)
ax.grid()
canvas.draw() # do Update to GUI canvas
# 5. PySimpleGUI event loop
while True:
event, values = window.read()
if event in (sg.WINDOW_CLOSED, 'Exit'):
break
elif event == 'Plot':
"""
path = values['Path']
if not Path(path).is_file():
continue
"""
# 6. Get data from path and plot from here
ax.cla() # Clear axes first if required
ax.set_title(f"Sensor Data")
ax.set_xlabel("X axis")
ax.set_ylabel("Y axis")
ax.grid()
theta = random.randint(0, 359)
x = [degree for degree in range(1080)]
y = [math.sin((degree+theta)/180*math.pi) for degree in range(1080)]
ax.plot(x, y)
canvas.draw() # do Update to GUI canvas
# 7. Close window to exit
window.close()