I am calculating CRC on a large chunk of data every cycle in hardware (64B per cycle). In order to parallelize the CRC calculation, I want to calculate the CRC for small data chunks and then XOR them in parallel.
Approach:
Hence, I am calculating the CRC for a small chunk of data, then multiply it with CRC of 0x1 shifted by 'i' times as shown below.
In short, I am trying to accomplish below:
For example: CRC-8 on this site:
Input Data=(0x05 0x07) CRC=0x54
Step-1: Data=0x5 CRC=0x1B
Step-2: Data=0x7 CRC=0x15
Step-3: Data=(0x1 0x0) CRC=0x15
Step-4: Multiply step-1 CRC and step-3 CRC with primitive polynomial 0x7. So, I calculate (0x1B).(0x15) = (0x1 0xC7) mod 0x7.
Step-5: Calculate CRC Data=(0x1 0xC7) CRC=0x4E (I assume this is same as (0x1 0xC7) mod 0x7)
Step-6: XOR the result to get the final CRC. 0x4E^0x15=0x5B
As we can see, the result in step-6 is not the correct result.
Can someone help me how to calculate the CRC for padded data? Or where am I going wrong in the above example?
Rather than calculate and then adjust multiple CRC's, bytes of data can be carryless multiplied to form a set of 16 bit "folded" products, which are then xor'ed and a single modulo operation performed on the xor'ed "folded" products. An optimized modulo operation uses two carryless multiples, so it's avoided until all folded products have been generated and xor'ed together. A carryless multiply uses XOR instead of ADD and a borrowless divide uses XOR instead of SUB. Intel has a pdf file about this using the XMM instruction PCLMULQDQ (carryless multiply), where 16 bytes are read at a time, split into two 8 byte groups, with each group folded into a 16 byte product, and the two 16 byte products are xor'ed to form a single 16 byte product. Using 8 XMM registers to hold folding products, 128 bytes at time are processed. (256 bytes at at time in the case of AVX512 and ZMM registers).
Assume your hardware can implement a carryless multiply that takes two 8 bit operands and produces a 16 bit (technically 15 bit) product.
Let message = M = 31 32 33 34 35 36 37 38. In this case CRC(M) = C7
pre-calculated constants (all values shown in hex):
2^38%107 = DF cycles forwards 0x38 bits
2^30%107 = 29 cycles forwards 0x30 bits
2^28%107 = 62 cycles forwards 0x28 bits
2^20%107 = 16 cycles forwards 0x20 bits
2^18%107 = 6B cycles forwards 0x18 bits
2^10%107 = 15 cycles forwards 0x10 bits
2^08%107 = 07 cycles forwards 0x08 bits
2^00%107 = 01 cycles forwards 0x00 bits
16 bit folded (cycled forward) products (can be calculated in parallel):
31·DF = 16CF
32·29 = 07E2
33·62 = 0AC6
34·16 = 03F8
35·6B = 0A17
36·15 = 038E
37·07 = 0085
38·01 = 0038
----
V = 1137 the xor of the 8 folded products
CRC(V) = 113700 % 107 = C7
To avoid having to use borrowless divide for the modulo operation, CRC(V) can be computed using carryless multiply. For example
V = FFFE
CRC(V) = FFFE00 % 107 = 23.
Implementation, again all values in hex (hex 10 = decimal 16), ⊕ is XOR.
input:
V = FFFE
constants:
P = 107 polynomial
I = 2^10 / 107 = 107 "inverse" of polynomial
by coincidence, it's the same value
2^10 % 107 = 15 for folding right 16 bits
fold the upper 8 bits of FFFE00 16 bits to the right:
U = FF·15 ⊕ FE00 = 0CF3 ⊕ FE00 = F2F3 (check: F2F3%107 = 23 = CRC)
Q = ((U>>8)·I)>>8 = (F2·107)>>8 = ...
to avoid a 9 bit operand, split up 107 = 100 ⊕ 7
Q = ((F2·100) ⊕ (F2·07))>>8 = ((F2<<8) ⊕ (F2·07))>>8 = (F200 ⊕ 02DE)>>8 = F0DE>>8 = F0
X = Q·P = F0·107 = F0·100 ⊕ F0·07 = F0<<8 ⊕ F0·07 = F000 ⊕ 02D0 = F2D0
CRC = U ⊕ X = F2F3 ⊕ F2D0 = 23
Since the CRC is 8 bits, there's no need for the upper 8 bits in the last two steps, but it doesn't help that much for the overall calculation.
X = (Q·(P&FF))&FF = (F0·07)&FF = D0
CRC = (U&FF) ⊕ X = F3 ⊕ D0 = 23
Example program to generate 2^0x10 / 0x107 and powers of 2 % 0x107:
#include <stdio.h>
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
#define poly 0x107
uint16_t geninv(void) /* generate 2^16 / 9 bit poly */
{
uint16_t q = 0x0000u; /* quotient */
uint16_t d = 0x0001u; /* initial dividend = 2^0 */
for(int i = 0; i < 16; i++){
d <<= 1;
q <<= 1;
if(d&0x0100){ /* if bit 8 set */
q |= 1; /* q |= 1 */
d ^= poly; /* d ^= poly */
}
}
return q; /* return inverse */
}
uint8_t powmodpoly(int n) /* generate 2^n % 9 bit poly */
{
uint16_t d = 0x0001u; /* initial dividend = 2^0 */
for(int i = 0; i < n; i++){
d <<= 1; /* shift dvnd left */
if(d&0x0100){ /* if bit 8 set */
d ^= poly; /* d ^= poly */
}
}
return (uint8_t)d; /* return remainder */
}
int main()
{
printf("%04x\n", geninv());
printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
powmodpoly(0x00), powmodpoly(0x08), powmodpoly(0x10), powmodpoly(0x18),
powmodpoly(0x20), powmodpoly(0x28), powmodpoly(0x30), powmodpoly(0x38),
powmodpoly(0x40), powmodpoly(0x48));
printf("%02x\n", powmodpoly(0x77)); /* 0xd9, cycles crc backwards 8 bits */
return 0;
}
Long hand example for 2^0x10 / 0x107.
100000111 quotient
-------------------
divisor 100000111 | 10000000000000000 dividend
100000111
---------
111000000
100000111
---------
110001110
100000111
---------
100010010
100000111
---------
10101 remainder
I don't know how many registers you can have in your hardware design, but assume there are five 16 bit registers used to hold folded values, and either two or eight 8 bit registers (depending on how parallel the folding is done). Then following the Intel paper, you fold values for all 64 bytes, 8 bytes at a time, and only need one modulo operation. Register size, fold# = 16 bits, reg# = 8 bits. Note that powers of 2 modulo poly are pre-calculated constants.
foldv = prior buffer's folding value, equivalent to folded msg[-2 -1]
reg0 = foldv>>8
reg1 = foldv&0xFF
foldv = reg0·((2^0x18)%poly) advance by 3 bytes
foldv ^= reg1·((2^0x10)%poly) advance by 2 bytes
fold0 = msg[0 1] ^ foldv handling 2 bytes at a time
fold1 = msg[2 3]
fold2 = msg[4 5]
fold3 = msg[6 7]
for(i = 8; i < 56; i += 8){
reg0 = fold0>>8
reg1 = fold0&ff
fold0 = reg0·((2^0x48)%poly) advance by 9 bytes
fold0 ^= reg1·((2^0x40)%poly) advance by 8 bytes
fold0 ^= msg[i+0 i+1]
reg2 = fold1>>8 if not parallel, reg0
reg3 = fold1&ff and reg1
fold1 = reg2·((2^0x48)%poly) advance by 9 bytes
fold1 ^= reg3·((2^0x40)%poly) advance by 8 bytes
fold1 ^= msg[i+2 i+3]
...
fold3 ^= msg[i+6 i+7]
}
reg0 = fold0>>8
reg1 = fold0&ff
fold0 = reg0·((2^0x38)%poly) advance by 7 bytes
fold0 ^= reg1·((2^0x30)%poly) advance by 6 bytes
reg2 = fold1>>8 if not parallel, reg0
reg3 = fold1&ff and reg1
fold1 = reg2·((2^0x28)%poly) advance by 5 bytes
fold1 ^= reg3·((2^0x20)%poly) advance by 4 bytes
fold2 ... advance by 3 2 bytes
fold3 ... advance by 1 0 bytes
foldv = fold0^fold1^fold2^fold3
Say the final buffer has 5 bytes:
foldv = prior folding value, equivalent to folded msg[-2 -1]
reg0 = foldv>>8
reg1 = foldv&0xFF
foldv = reg0·((2^0x30)%poly) advance by 6 bytes
foldv ^= reg1·((2^0x28)%poly) advance by 5 bytes
fold0 = msg[0 1] ^ foldv
reg0 = fold0>>8
reg1 = fold0&ff
fold0 = reg0·((2^0x20)%poly) advance by 4 bytes
fold0 ^= reg1·((2^0x18)%poly) advance by 3 bytes
fold1 = msg[2 3]
reg2 = fold1>>8
reg3 = fold1&ff
fold1 = reg0·((2^0x10)%poly) advance by 2 bytes
fold1 ^= reg1·((2^0x08)%poly) advance by 1 bytes
fold2 = msg[4] just one byte loaded
fold3 = 0
foldv = fold0^fold1^fold2^fold3
now use the method above to calculate CRC(foldv)