I am new in R and trying to learn tidymodels.
I am getting this error only with glm
for iris dataset
and if I change dataset
& recipe then glm
is running fine but then I start to get this error in kknn
.
Warning message:
"All models failed in [fit_resamples()]. See the `.notes` column."
Warning message:
"This tuning result has notes. Example notes on model fitting include:
internal: Error: In metric: `roc_auc`
I checked .notes
and this is how it looks:
.notes
<chr>
internal: Error: In metric: `roc_auc`
A tibble: 1 × 1 .notes
<chr>
internal: Error: In metric: `roc_auc`
A tibble: 1 × 1
Warning message: All models failed in [fit_resamples()]. See the `.notes` column
As it was suggested in above post I tried to upgrade parsnip
& tune
packages from github but getting error on installing tune package
: Warning in install.packages : package ‘tune’ is not available for this version of R
I am not sure what's wrong, appreciate if someone can help !!!
Version information:
-- Attaching packages --------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.2 v purrr 0.3.4
v tibble 3.0.4 v dplyr 1.0.2
v tidyr 1.1.2 v stringr 1.4.0
v readr 1.4.0 v forcats 0.5.0
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
-- Attaching packages -------------------------------------- tidymodels 0.1.1 --
v broom 0.7.2 v recipes 0.1.14
v dials 0.0.9 v rsample 0.0.8
v infer 0.5.3 v tune 0.1.1
v modeldata 0.0.2 v workflows 0.2.1
v parsnip 0.1.3.9000 v yardstick 0.0.7
-- Conflicts ----------------------------------------- tidymodels_conflicts() --
x scales::discard() masks purrr::discard()
x dplyr::filter() masks stats::filter()
x recipes::fixed() masks stringr::fixed()
x dplyr::lag() masks stats::lag()
x yardstick::spec() masks readr::spec()
x recipes::step() masks stats::step()
Windows 7
platform x86_64-w64-mingw32
arch x86_64
os mingw32
system x86_64, mingw32
status
major 4
minor 0.3
year 2020
month 10
day 10
svn rev 79318
language R
version.string R version 4.0.3 (2020-10-10)
Code:
library(tidyverse)
library(tidymodels)
library(themis)
iris
# Data split
set.seed(999)
iris_split <- initial_split(iris, strata = Species)
iris_train <- training(iris_split)
iris_test <- testing(iris_split)
# Cross Validation
set.seed(345)
iris_fold <- vfold_cv(iris_train)
print(iris_fold)
# recipe
iris_rec <- recipe(Species ~., data = iris_train) %>%
#make sure the training set has equal numbers of target variale (not needed for iris dataset)
step_downsample(Species) %>%
#normalise the data
step_center(-Species) %>%
step_scale(-Species) %>%
step_BoxCox(-Species) %>%
#function to apply the recipe to the data
prep()
# Workflow
iris_wf <- workflow() %>%
add_recipe(iris_rec)
# logistic
glm_spec <- logistic_reg() %>%
set_engine("glm")
# to do parallel processing
doParallel::registerDoParallel()
# adding parameters to workflow
glm_rs <- iris_wf %>%
add_model(glm_spec) %>%
fit_resamples(
resamples = iris_fold,
metrics = metric_set(roc_auc, accuracy, sensitivity, specificity),
control = control_resamples(save_pred = TRUE)
)
ERROR
Warning message:
"All models failed in [fit_resamples()]. See the `.notes` column."
Warning message:
"This tuning result has notes. Example notes on model fitting include:
internal: Error: In metric: `roc_auc`
internal: Error: In metric: `roc_auc`
internal: Error: In metric: `roc_auc`"
# Resampling results
# 10-fold cross-validation
# A tibble: 10 x 5
splits id .metrics .notes .predictions
<list> <chr> <list> <list> <list>
1 <split [102/12]> Fold01 <NULL> <tibble [1 x 1]> <NULL>
2 <split [102/12]> Fold02 <NULL> <tibble [1 x 1]> <NULL>
3 <split [102/12]> Fold03 <NULL> <tibble [1 x 1]> <NULL>
4 <split [102/12]> Fold04 <NULL> <tibble [1 x 1]> <NULL>
5 <split [103/11]> Fold05 <NULL> <tibble [1 x 1]> <NULL>
6 <split [103/11]> Fold06 <NULL> <tibble [1 x 1]> <NULL>
7 <split [103/11]> Fold07 <NULL> <tibble [1 x 1]> <NULL>
8 <split [103/11]> Fold08 <NULL> <tibble [1 x 1]> <NULL>
9 <split [103/11]> Fold09 <NULL> <tibble [1 x 1]> <NULL>
10 <split [103/11]> Fold10 <NULL> <tibble [1 x 1]> <NULL>
(UPDATE)
Getting error with RF
even without using Parallel
compute
I had the same issue on a Linux machine but solved it with the removal of NAs or their imputation. So, it seems that the presence of NAs is causing the model fitting failure! :)