The following program uses a PF_PACKET
socket to send a TCP SYN
packet to web server read from a file which is a list of web server IPv4 addresses - one address per line. The code is quite long because it takes a lot of code to obtain the gateway router MAC and IP address necessary for filling in the ethernet and IP headers. The good news is you can just skip all the functions in the preamble and just go to main which is where the problem is.
My program works perfectly for the first iteration of the while loop in main. Here is the output:
$ sudo ./mmap/my_mmap_with_one_socket ip
Soft: 1024 Hard: 1048576
New Soft: 1048576 New Hard: 1048576
Main routing table IPv4
default via 192.168.1.254 dev enp3s0
10.8.0.0/24 dev tun0
169.254.0.0/16 dev enp3s0
192.168.1.0/24 dev enp3s0
get_if_info for enp3s0
interface index is 2
get_if_info OK
Clean up temporary socket
bind_arp: ifindex=2
Binding to ifindex 2
Copy IP address to arp_req
read_arp
received ARP len=60
Sender IP: 192.168.1.254
Sender MAC: 70:97:41:4B:1E:C2
Got reply, break out
send 1 packets (+54 bytes)
But then the program doesn't make any progress because sendto
keeps returning zero on every subsequent iteration. Why? How can I fix this?
Here's the code:
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <linux/if_packet.h>
#include <net/ethernet.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netinet/tcp.h> //Provides declarations for tcp header
#include <netinet/ip.h> //Provides declarations for ip header
#include <netinet/ether.h>
#include <ifaddrs.h>
#include <asm/types.h>
#include <linux/if_ether.h>
//#include <linux/if_arp.h>
#include <arpa/inet.h> //htons etc
#include <time.h>
#include <linux/rtnetlink.h>
#include <sys/resource.h>
#define PROTO_ARP 0x0806
#define ETH2_HEADER_LEN 14
#define HW_TYPE 1
#define MAC_LENGTH 6
#define IPV4_LENGTH 4
#define ARP_REQUEST 0x01
#define ARP_REPLY 0x02
#define BUF_SIZE 60
#define MAX_CONNECTIONS 10000
#define debug(x...) printf(x);printf("\n");
#define info(x...) printf(x);printf("\n");
#define warn(x...) printf(x);printf("\n");
#define err(x...) printf(x);printf("\n");
static char * str_devname= NULL;
static int mode_loss = 0;
static int c_packet_sz = 150;
static int c_buffer_sz = 1024*8;
static int c_buffer_nb = 1024;
static int c_sndbuf_sz = 0;
static int c_send_mask = 127;
static int c_error = 0;
static int c_mtu = 0;
static int mode_thread = 0;
volatile int fd_socket;
volatile int data_offset = 0;
volatile struct tpacket_hdr * ps_header_start;
volatile struct sockaddr_ll *ps_sockaddr = NULL;
volatile int shutdown_flag = 0;
int done = 0;
struct tpacket_req s_packet_req;
unsigned char buffer[BUF_SIZE];
struct arp_header *arp_resp = (struct arp_header *) (buffer + ETH2_HEADER_LEN);
char ifname[512];
char ip[512];
/*
96 bit (12 bytes) pseudo header needed for tcp header checksum calculation
*/
struct pseudo_header
{
u_int32_t source_address;
u_int32_t dest_address;
u_int8_t placeholder;
u_int8_t protocol;
u_int16_t tcp_length;
};
struct arp_header {
unsigned short hardware_type;
unsigned short protocol_type;
unsigned char hardware_len;
unsigned char protocol_len;
unsigned short opcode;
unsigned char sender_mac[MAC_LENGTH];
unsigned char sender_ip[IPV4_LENGTH];
unsigned char target_mac[MAC_LENGTH];
unsigned char target_ip[IPV4_LENGTH];
};
int rtnl_receive(int fd, struct msghdr *msg, int flags)
{
int len;
do {
len = recvmsg(fd, msg, flags);
} while (len < 0 && (errno == EINTR || errno == EAGAIN));
if (len < 0) {
perror("Netlink receive failed");
return -errno;
}
if (len == 0) {
perror("EOF on netlink");
return -ENODATA;
}
return len;
}
static int rtnl_recvmsg(int fd, struct msghdr *msg, char **answer)
{
struct iovec *iov = msg->msg_iov;
char *buf;
int len;
iov->iov_base = NULL;
iov->iov_len = 0;
len = rtnl_receive(fd, msg, MSG_PEEK | MSG_TRUNC);
if (len < 0) {
return len;
}
buf = malloc(len);
if (!buf) {
perror("malloc failed");
return -ENOMEM;
}
iov->iov_base = buf;
iov->iov_len = len;
len = rtnl_receive(fd, msg, 0);
if (len < 0) {
free(buf);
return len;
}
*answer = buf;
return len;
}
void parse_rtattr(struct rtattr *tb[], int max, struct rtattr *rta, int len)
{
memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
while (RTA_OK(rta, len)) {
if (rta->rta_type <= max) {
tb[rta->rta_type] = rta;
}
rta = RTA_NEXT(rta,len);
}
}
static inline int rtm_get_table(struct rtmsg *r, struct rtattr **tb)
{
__u32 table = r->rtm_table;
if (tb[RTA_TABLE]) {
table = *(__u32 *)RTA_DATA(tb[RTA_TABLE]);
}
return table;
}
void print_route(struct nlmsghdr* nl_header_answer)
{
struct rtmsg* r = NLMSG_DATA(nl_header_answer);
int len = nl_header_answer->nlmsg_len;
struct rtattr* tb[RTA_MAX+1];
int table;
char buf[256];
len -= NLMSG_LENGTH(sizeof(*r));
if (len < 0) {
perror("Wrong message length");
return;
}
parse_rtattr(tb, RTA_MAX, RTM_RTA(r), len);
table = rtm_get_table(r, tb);
if (r->rtm_family != AF_INET && table != RT_TABLE_MAIN) {
return;
}
if (tb[RTA_DST]) {
if ((r->rtm_dst_len != 24) && (r->rtm_dst_len != 16)) {
return;
}
printf("%s/%u ", inet_ntop(r->rtm_family, RTA_DATA(tb[RTA_DST]), buf, sizeof(buf)), r->rtm_dst_len);
} else if (r->rtm_dst_len) {
printf("0/%u ", r->rtm_dst_len);
} else {
printf("default ");
}
if (tb[RTA_GATEWAY]) {
printf("via %s", inet_ntop(r->rtm_family, RTA_DATA(tb[RTA_GATEWAY]), buf, sizeof(buf)));
strcpy(ip, inet_ntop(r->rtm_family, RTA_DATA(tb[RTA_GATEWAY]), buf, sizeof(buf)));
}
if (tb[RTA_OIF]) {
char if_nam_buf[IF_NAMESIZE];
int ifidx = *(__u32 *)RTA_DATA(tb[RTA_OIF]);
printf(" dev %s", if_indextoname(ifidx, if_nam_buf));
}
if (tb[RTA_GATEWAY] && tb[RTA_OIF]) {
char if_nam_buf[IF_NAMESIZE];
int ifidx = *(__u32 *)RTA_DATA(tb[RTA_OIF]);
strcpy(ifname, if_indextoname(ifidx, if_nam_buf));
}
if (tb[RTA_SRC]) {
printf("src %s", inet_ntop(r->rtm_family, RTA_DATA(tb[RTA_SRC]), buf, sizeof(buf)));
}
printf("\n");
}
int open_netlink()
{
struct sockaddr_nl saddr;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock < 0) {
perror("Failed to open netlink socket");
return -1;
}
memset(&saddr, 0, sizeof(saddr));
saddr.nl_family = AF_NETLINK;
saddr.nl_pid = getpid();
if (bind(sock, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) {
perror("Failed to bind to netlink socket");
close(sock);
return -1;
}
return sock;
}
int do_route_dump_requst(int sock)
{
struct {
struct nlmsghdr nlh;
struct rtmsg rtm;
} nl_request;
nl_request.nlh.nlmsg_type = RTM_GETROUTE;
nl_request.nlh.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
nl_request.nlh.nlmsg_len = sizeof(nl_request);
nl_request.nlh.nlmsg_seq = time(NULL);
nl_request.rtm.rtm_family = AF_INET;
return send(sock, &nl_request, sizeof(nl_request), 0);
}
int get_route_dump_response(int sock)
{
struct sockaddr_nl nladdr;
struct iovec iov;
struct msghdr msg = {
.msg_name = &nladdr,
.msg_namelen = sizeof(nladdr),
.msg_iov = &iov,
.msg_iovlen = 1,
};
char *buf;
int dump_intr = 0;
int status = rtnl_recvmsg(sock, &msg, &buf);
struct nlmsghdr *h = (struct nlmsghdr *)buf;
int msglen = status;
printf("Main routing table IPv4\n");
while (NLMSG_OK(h, msglen)) {
if (h->nlmsg_flags & NLM_F_DUMP_INTR) {
fprintf(stderr, "Dump was interrupted\n");
free(buf);
return -1;
}
if (nladdr.nl_pid != 0) {
continue;
}
if (h->nlmsg_type == NLMSG_ERROR) {
perror("netlink reported error");
free(buf);
}
print_route(h);
h = NLMSG_NEXT(h, msglen);
}
free(buf);
return status;
}
/*
* Converts struct sockaddr with an IPv4 address to network byte order uin32_t.
* Returns 0 on success.
*/
int int_ip4(struct sockaddr *addr, uint32_t *ip)
{
if (addr->sa_family == AF_INET) {
struct sockaddr_in *i = (struct sockaddr_in *) addr;
*ip = i->sin_addr.s_addr;
return 0;
} else {
err("Not AF_INET");
return 1;
}
}
/*
* Formats sockaddr containing IPv4 address as human readable string.
* Returns 0 on success.
*/
int format_ip4(struct sockaddr *addr, char *out)
{
if (addr->sa_family == AF_INET) {
struct sockaddr_in *i = (struct sockaddr_in *) addr;
const char *ip = inet_ntoa(i->sin_addr);
if (!ip) {
return -2;
} else {
strcpy(out, ip);
return 0;
}
} else {
return -1;
}
}
/*
* Writes interface IPv4 address as network byte order to ip.
* Returns 0 on success.
*/
int get_if_ip4(int fd, const char *ifname, uint32_t *ip) {
int err = -1;
struct ifreq ifr;
memset(&ifr, 0, sizeof(struct ifreq));
if (strlen(ifname) > (IFNAMSIZ - 1)) {
err("Too long interface name");
goto out;
}
strcpy(ifr.ifr_name, ifname);
if (ioctl(fd, SIOCGIFADDR, &ifr) == -1) {
perror("SIOCGIFADDR");
goto out;
}
if (int_ip4(&ifr.ifr_addr, ip)) {
goto out;
}
err = 0;
out:
return err;
}
/*
* Sends an ARP who-has request to dst_ip
* on interface ifindex, using source mac src_mac and source ip src_ip.
*/
int send_arp(int fd, int ifindex, const unsigned char *src_mac, uint32_t src_ip, uint32_t dst_ip)
{
int err = -1;
unsigned char buffer[BUF_SIZE];
memset(buffer, 0, sizeof(buffer));
struct sockaddr_ll socket_address;
socket_address.sll_family = AF_PACKET;
socket_address.sll_protocol = htons(ETH_P_ARP);
socket_address.sll_ifindex = ifindex;
socket_address.sll_hatype = htons(ARPHRD_ETHER);
socket_address.sll_pkttype = (PACKET_BROADCAST);
socket_address.sll_halen = MAC_LENGTH;
socket_address.sll_addr[6] = 0x00;
socket_address.sll_addr[7] = 0x00;
struct ethhdr *send_req = (struct ethhdr *) buffer;
struct arp_header *arp_req = (struct arp_header *) (buffer + ETH2_HEADER_LEN);
int index;
ssize_t ret, length = 0;
//Broadcast
memset(send_req->h_dest, 0xff, MAC_LENGTH);
//Target MAC zero
memset(arp_req->target_mac, 0x00, MAC_LENGTH);
//Set source mac to our MAC address
memcpy(send_req->h_source, src_mac, MAC_LENGTH);
memcpy(arp_req->sender_mac, src_mac, MAC_LENGTH);
memcpy(socket_address.sll_addr, src_mac, MAC_LENGTH);
/* Setting protocol of the packet */
send_req->h_proto = htons(ETH_P_ARP);
/* Creating ARP request */
arp_req->hardware_type = htons(HW_TYPE);
arp_req->protocol_type = htons(ETH_P_IP);
arp_req->hardware_len = MAC_LENGTH;
arp_req->protocol_len = IPV4_LENGTH;
arp_req->opcode = htons(ARP_REQUEST);
debug("Copy IP address to arp_req");
memcpy(arp_req->sender_ip, &src_ip, sizeof(uint32_t));
memcpy(arp_req->target_ip, &dst_ip, sizeof(uint32_t));
ret = sendto(fd, buffer, 42, 0, (struct sockaddr *) &socket_address, sizeof(socket_address));
if (ret == -1) {
perror("sendto():");
goto out;
}
err = 0;
out:
return err;
}
/*
* Gets interface information by name:
* IPv4
* MAC
* ifindex
*/
int get_if_info(const char *ifname, uint32_t *ip, char *mac, int *ifindex)
{
debug("get_if_info for %s", ifname);
int err = -1;
struct ifreq ifr;
int sd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ARP));
if (sd <= 0) {
perror("socket()");
goto out;
}
if (strlen(ifname) > (IFNAMSIZ - 1)) {
printf("Too long interface name, MAX=%i\n", IFNAMSIZ - 1);
goto out;
}
strcpy(ifr.ifr_name, ifname);
//Get interface index using name
if (ioctl(sd, SIOCGIFINDEX, &ifr) == -1) {
perror("SIOCGIFINDEX");
goto out;
}
*ifindex = ifr.ifr_ifindex;
printf("interface index is %d\n", *ifindex);
//Get MAC address of the interface
if (ioctl(sd, SIOCGIFHWADDR, &ifr) == -1) {
perror("SIOCGIFINDEX");
goto out;
}
//Copy mac address to output
memcpy(mac, ifr.ifr_hwaddr.sa_data, MAC_LENGTH);
if (get_if_ip4(sd, ifname, ip)) {
goto out;
}
debug("get_if_info OK");
err = 0;
out:
if (sd > 0) {
debug("Clean up temporary socket");
close(sd);
}
return err;
}
/*
* Creates a raw socket that listens for ARP traffic on specific ifindex.
* Writes out the socket's FD.
* Return 0 on success.
*/
int bind_arp(int ifindex, int *fd)
{
debug("bind_arp: ifindex=%i", ifindex);
int ret = -1;
// Submit request for a raw socket descriptor.
*fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ARP));
if (*fd < 1) {
perror("socket()");
goto out;
}
debug("Binding to ifindex %i", ifindex);
struct sockaddr_ll sll;
memset(&sll, 0, sizeof(struct sockaddr_ll));
sll.sll_family = AF_PACKET;
sll.sll_ifindex = ifindex;
if (bind(*fd, (struct sockaddr*) &sll, sizeof(struct sockaddr_ll)) < 0) {
perror("bind");
goto out;
}
ret = 0;
out:
if (ret && *fd > 0) {
debug("Cleanup socket");
close(*fd);
}
return ret;
}
/*
* Reads a single ARP reply from fd.
* Return 0 on success.
*/
int read_arp(int fd)
{
debug("read_arp");
int ret = -1;
ssize_t length = recvfrom(fd, buffer, BUF_SIZE, 0, NULL, NULL);
int index;
if (length == -1) {
perror("recvfrom()");
goto out;
}
struct ethhdr *rcv_resp = (struct ethhdr *) buffer;
if (ntohs(rcv_resp->h_proto) != PROTO_ARP) {
debug("Not an ARP packet");
goto out;
}
if (ntohs(arp_resp->opcode) != ARP_REPLY) {
debug("Not an ARP reply");
goto out;
}
debug("received ARP len=%ld", length);
struct in_addr sender_a;
memset(&sender_a, 0, sizeof(struct in_addr));
memcpy(&sender_a.s_addr, arp_resp->sender_ip, sizeof(uint32_t));
debug("Sender IP: %s", inet_ntoa(sender_a));
debug("Sender MAC: %02X:%02X:%02X:%02X:%02X:%02X",
arp_resp->sender_mac[0],
arp_resp->sender_mac[1],
arp_resp->sender_mac[2],
arp_resp->sender_mac[3],
arp_resp->sender_mac[4],
arp_resp->sender_mac[5]);
ret = 0;
out:
return ret;
}
/*
*
* Sample code that sends an ARP who-has request on
* interface <ifname> to IPv4 address <ip>.
* Returns 0 on success.
*/
int test_arping(const char *ifname, const char *ip) {
int ret = -1;
uint32_t dst = inet_addr(ip);
if (dst == 0 || dst == 0xffffffff) {
printf("Invalid source IP\n");
return 1;
}
int src;
int ifindex;
char mac[MAC_LENGTH];
if (get_if_info(ifname, &src, mac, &ifindex)) {
err("get_if_info failed, interface %s not found or no IP set?", ifname);
goto out;
}
int arp_fd;
if (bind_arp(ifindex, &arp_fd)) {
err("Failed to bind_arp()");
goto out;
}
if (send_arp(arp_fd, ifindex, mac, src, dst)) {
err("Failed to send_arp");
goto out;
}
while(1) {
int r = read_arp(arp_fd);
if (r == 0) {
info("Got reply, break out");
break;
}
}
ret = 0;
out:
if (arp_fd) {
close(arp_fd);
arp_fd = 0;
}
return ret;
}
unsigned short checksum2(const char *buf, unsigned size)
{
unsigned long long sum = 0;
const unsigned long long *b = (unsigned long long *) buf;
unsigned t1, t2;
unsigned short t3, t4;
/* Main loop - 8 bytes at a time */
while (size >= sizeof(unsigned long long))
{
unsigned long long s = *b++;
sum += s;
if (sum < s) sum++;
size -= 8;
}
/* Handle tail less than 8-bytes long */
buf = (const char *) b;
if (size & 4)
{
unsigned s = *(unsigned *)buf;
sum += s;
if (sum < s) sum++;
buf += 4;
}
if (size & 2)
{
unsigned short s = *(unsigned short *) buf;
sum += s;
if (sum < s) sum++;
buf += 2;
}
if (size)
{
unsigned char s = *(unsigned char *) buf;
sum += s;
if (sum < s) sum++;
}
/* Fold down to 16 bits */
t1 = sum;
t2 = sum >> 32;
t1 += t2;
if (t1 < t2) t1++;
t3 = t1;
t4 = t1 >> 16;
t3 += t4;
if (t3 < t4) t3++;
return ~t3;
}
int main( int argc, char ** argv )
{
uint32_t size;
size_t len;
struct sockaddr_ll my_addr, peer_addr;
int i_ifindex;
int ec;
struct ifreq s_ifr; /* points to one interface returned from ioctl */
int tmp;
FILE * fp;
char server[254];
int count = 0;
int first_time = 1;
int z;
int first_mmap = 1;
#define HWADDR_len 6
#define IP_len 4
int s,s2,i;
struct ifreq ifr,ifr2;
int ret = -1;
struct rlimit lim;
if (argc != 2) {
printf("Usage: %s <INPUT_FILE>\n", argv[0]);
return 1;
}
getrlimit(RLIMIT_NOFILE, &lim);
printf("Soft: %d Hard: %d\n", (int)lim.rlim_cur, (int)lim.rlim_max);
lim.rlim_cur = lim.rlim_max;
if (setrlimit(RLIMIT_NOFILE, &lim) == -1) {
printf("rlimit failed\n");
return -1;
}
getrlimit(RLIMIT_NOFILE, &lim);
printf("New Soft: %d New Hard: %d\n", (int)lim.rlim_cur, (int)lim.rlim_max);
int nl_sock = open_netlink();
if (do_route_dump_requst(nl_sock) < 0) {
perror("Failed to perfom request");
close(nl_sock);
return -1;
}
get_route_dump_response(nl_sock);
close (nl_sock);
test_arping(ifname, ip);
s = socket(AF_INET, SOCK_DGRAM, 0);
s2 = socket(AF_INET, SOCK_DGRAM, 0);
strcpy(ifr.ifr_name, ifname);
strcpy(ifr2.ifr_name, ifname);
ioctl(s, SIOCGIFHWADDR, &ifr);
ioctl(s2, SIOCGIFADDR, &ifr2);
struct sockaddr_in* ipaddr = (struct sockaddr_in*)&ifr2.ifr_addr;
close(s);
fp = fopen(argv[1], "r");
if (!fp)
exit(EXIT_FAILURE);
fd_socket = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if(fd_socket == -1)
{
perror("socket");
return EXIT_FAILURE;
}
/* clear structure */
memset(&my_addr, 0, sizeof(struct sockaddr_ll));
my_addr.sll_family = PF_PACKET;
my_addr.sll_protocol = htons(ETH_P_ALL);
str_devname = ifname;
//strcpy (str_devname, ifname);
/* initialize interface struct */
strncpy (s_ifr.ifr_name, str_devname, sizeof(s_ifr.ifr_name));
/* Get the broad cast address */
ec = ioctl(fd_socket, SIOCGIFINDEX, &s_ifr);
if(ec == -1)
{
perror("iotcl");
return EXIT_FAILURE;
}
/* update with interface index */
i_ifindex = s_ifr.ifr_ifindex;
s_ifr.ifr_mtu = 7200;
/* update the mtu through ioctl */
ec = ioctl(fd_socket, SIOCSIFMTU, &s_ifr);
if(ec == -1)
{
perror("iotcl");
return EXIT_FAILURE;
}
/* set sockaddr info */
memset(&my_addr, 0, sizeof(struct sockaddr_ll));
my_addr.sll_family = AF_PACKET;
my_addr.sll_protocol = ETH_P_ALL;
my_addr.sll_ifindex = i_ifindex;
/* bind port */
if (bind(fd_socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll)) == -1)
{
perror("bind");
return EXIT_FAILURE;
}
/* prepare Tx ring request */
s_packet_req.tp_block_size = c_buffer_sz;
s_packet_req.tp_frame_size = c_buffer_sz;
s_packet_req.tp_block_nr = c_buffer_nb;
s_packet_req.tp_frame_nr = c_buffer_nb;
/* calculate memory to mmap in the kernel */
size = s_packet_req.tp_block_size * s_packet_req.tp_block_nr;
/* set packet loss option */
tmp = mode_loss;
if (setsockopt(fd_socket, SOL_PACKET, PACKET_LOSS, (char *)&tmp, sizeof(tmp))<0)
{
perror("setsockopt: PACKET_LOSS");
return EXIT_FAILURE;
}
/* send TX ring request */
if (setsockopt(fd_socket, SOL_PACKET, PACKET_TX_RING, (char *)&s_packet_req, sizeof(s_packet_req))<0)
{
perror("setsockopt: PACKET_TX_RING");
return EXIT_FAILURE;
}
/* change send buffer size */
if(c_sndbuf_sz) {
printf("send buff size = %d\n", c_sndbuf_sz);
if (setsockopt(fd_socket, SOL_SOCKET, SO_SNDBUF, &c_sndbuf_sz, sizeof(c_sndbuf_sz))< 0)
{
perror("getsockopt: SO_SNDBUF");
return EXIT_FAILURE;
}
}
/* get data offset */
data_offset = TPACKET_HDRLEN - sizeof(struct sockaddr_ll);
/* mmap Tx ring buffers memory */
ps_header_start = mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd_socket, 0);
if (ps_header_start == (void*)-1)
{
perror("mmap");
return EXIT_FAILURE;
}
while (!done)
{
char * data;
int first_loop = 1;
struct tpacket_hdr * ps_header;
int ec_send = 0;
ps_header = ((struct tpacket_hdr *)((void *)ps_header_start));
data = ((void*) ps_header) + data_offset;
//Datagram to represent the packet
char datagram[4096] , source_ip[32] , *pseudogram;
//zero out the packet buffer
memset (datagram, 0, 4096);
//Ethernet header
struct ether_header *eh = (struct ether_header *) datagram;
//IP header
struct iphdr *iph = (struct iphdr *) (datagram + sizeof (struct ether_header));
//TCP header
struct tcphdr *tcph = (struct tcphdr *) (datagram + sizeof (struct ether_header) + sizeof (struct ip));
struct sockaddr_in sin;
struct pseudo_header psh;
//some address resolution
strcpy(source_ip , inet_ntoa(ipaddr->sin_addr));
sin.sin_family = AF_INET;
sin.sin_port = htons(80);
if (fscanf(fp, "%253s", server) == 1)
{
sin.sin_addr.s_addr = inet_addr (server);
//printf("%s\n", server);
}
else
{
done = 1;
break;
}
//Fill in the Ethernet Header
eh->ether_dhost[0] = arp_resp->sender_mac[0];
eh->ether_dhost[1] = arp_resp->sender_mac[1];
eh->ether_dhost[2] = arp_resp->sender_mac[2];
eh->ether_dhost[3] = arp_resp->sender_mac[3];
eh->ether_dhost[4] = arp_resp->sender_mac[4];
eh->ether_dhost[5] = arp_resp->sender_mac[5];
memcpy(eh->ether_shost, ifr.ifr_hwaddr.sa_data, HWADDR_len);
eh->ether_type = htons(0x0800);
//Fill in the IP Header
iph->ihl = 5;
iph->version = 4;
iph->tos = 0;
iph->tot_len = htons(sizeof (struct iphdr) + sizeof (struct tcphdr));
iph->id = htons (54321); //Id of this packet
iph->frag_off = 0;
iph->ttl = 255;
iph->protocol = IPPROTO_TCP;
iph->check = 0; //Set to 0 before calculating checksum
iph->saddr = inet_addr ( source_ip );
iph->daddr = sin.sin_addr.s_addr;
//Ip checksum
iph->check = checksum2 (datagram + sizeof (struct ether_header), sizeof (struct iphdr));
//TCP Header
tcph->source = htons (1234);
tcph->dest = htons (80);
tcph->seq = 0;
tcph->ack_seq = 0;
tcph->doff = 5; //tcp header size
tcph->fin=0;
tcph->syn=1;
tcph->rst=0;
tcph->psh=0;
tcph->ack=0;
tcph->urg=0;
tcph->window = htons (5840); // maximum allowed window size
tcph->check = 0; //leave checksum 0 now, filled later by pseudo header
tcph->urg_ptr = 0;
//Now the TCP checksum
psh.source_address = inet_addr( source_ip );
psh.dest_address = sin.sin_addr.s_addr;
psh.placeholder = 0;
psh.protocol = IPPROTO_TCP;
psh.tcp_length = htons(sizeof(struct tcphdr));
int psize = sizeof(struct pseudo_header) + sizeof(struct tcphdr);
pseudogram = malloc(psize);
memcpy(pseudogram , (char*) &psh , sizeof (struct pseudo_header));
memcpy(pseudogram + sizeof(struct pseudo_header) , tcph , sizeof(struct tcphdr));
tcph->check = checksum2(pseudogram , psize);
memcpy(data, datagram, (sizeof(struct ether_header) + sizeof(struct iphdr) + sizeof(struct tcphdr)));
free(pseudogram);
len = sizeof(struct ether_header) + sizeof(struct iphdr) + sizeof(struct tcphdr);
//printf("len=%d data=%s\n", len, data);
//for (int k = 0; k < len; k++)
// printf("%c ", data + k);
//printf("\n");
/* update packet len */
ps_header->tp_len = len;
/* set header flag to USER (trigs xmit)*/
ps_header->tp_status = TP_STATUS_SEND_REQUEST;
//int ec_send;
static int total=0;
/* send all buffers with TP_STATUS_SEND_REQUEST */
/* Wait end of transfer */
ec_send = sendto(fd_socket,NULL,0,0,(struct sockaddr *) ps_sockaddr,sizeof(struct sockaddr_ll));
if(ec_send < 0) {
perror("sendto");
}
else if ( ec_send == 0 ) {
/* nothing to do => schedule : useful if no SMP */
//printf("Sleeping\n");
usleep(0);
}
else {
total += ec_send/(len);
printf("send %d packets (+%d bytes)\n",total, ec_send);
fflush(0);
}
}
//ps_header_start = mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd_socket, 0);
if (munmap(ps_header_start, size) == -1)
{
perror("munmap");
exit(EXIT_FAILURE);
}
close(fd_socket);
return 1;
}
If you are going to use PACKET_TX_RING
, then you must play by its rules: that means you can't use the same buffer spot over and over: you must advance to the next buffer location within the ring buffer: build the first packet in slot 0, the second in slot 1, etc. (wrapping when you get to the end of the buffer).
But you're building every packet in slot 0 (i.e. at ps_header_start
) but after sending the first packet, the kernel is expecting the next frame in the subsequent slot. It will never find the (second) packet you created in slot 0 until it has processed all the other slots. But it's looking at slot 1 and seeing that the tp_status
in that slot hasn't been set to TP_STATUS_SEND_REQUEST
yet so... nothing to do.
Note that your sendto
call is not providing a buffer address to the kernel. That's because the kernel knows where the next packet will come from, it must be in the next slot in the ring buffer following the one you just sent.
This is why I suggested in your other question that you not use PACKET_TX_RING
unless you really need it: it's more complicated to do correctly. It's much easier to just create your frame in a static buffer and call sendto(fd, buffer_address, buffer_len, ...)
. And if you are going to call sendto
for each created frame, there is literally no advantage to using PACKET_TX_RING
anyway.