I watched a video on Youtube explaining how to calculate which operations are used and how many times by going back to 1 from the last cell of the matrix obtained from the dynamic programming algorithm. Although I understood the example in the video, when I tried to do it with other examples, I couldn't. Is it possible to show every solution on the matrix? I also added the code that calculates the matrix at the end.
Let's assume our words are "apple" and "paper".
Matrix obtained from dynamic programming algorithm (I used Levensthein Distance operations.):
Minimum edit distance of "apple" and "paper" is 4.
One of the solutions is 4 replace operations.
1. apple -> ppple (replace "a" with "p")
2. ppple -> paple (replace "p" with "a")
3. paple -> papee (replace "l" with "e")
4. papee -> paper (replace "e" with "r")
Solution on matrix:
Is it possible to show other solutions on this matrix?
For example:
1. apple -> papple (insert "p")
2. papple -> paple (remove "p")
3. paple -> pape (remove "l")
4. pape -> paper (insert "r")
code:
def min_edit_count(word1, word2):
word1 = ' ' + word1 #
word2 = ' ' + word2 # add a space before original words
len_w1 = len(word1) #
len_w2 = len(word2) # calculate the lengths of new words
edit_matrix = np.zeros((len_w2, len_w1), dtype = int)
# create a matrix with all zeros
edit_matrix[0, :] = range(len_w1)
# assign numbers from 0 to len_w1 in the first row of the edit_matrix
edit_matrix[:, 0] = range(len_w2)
# assign numbers from 0 to len_w2 in the first column of the edit_matrix
for i in range(1, len_w2):
for j in range(1, len_w1):
# edit_matrix[i-1][j] --> remove
# edit_matrix[i][j-1] --> insert
# edit_matrix[i-1][j-1] --> replace
temp1 = edit_matrix[i-1][j] + 1
temp2 = edit_matrix[i][j-1] + 1
# add 1 to edit_matrix[i-1][j] and edit_matrix[i][j-1]
temp3 = edit_matrix[i-1][j-1] + 1 if word1[j] != word2[i] else edit_matrix[i-1][j-1]
# if last characters are same don't add 1 to edit_matrix[i-1][j-1].
# no need to replace
edit_count = min(temp1, temp2, temp3)
# find min between three numbers
edit_matrix[i][j] = edit_count
min_edit = int(edit_matrix[len_w2 - 1, len_w1 - 1])
# minimum edit count is the last number calculated
return min_edit, edit_matrix
Based on Sorin's good answer, here is a slightly enhanced version that is fixed to fit your indexing and also prints the edit operations that need to be done in each case:
def get_solutions(edit_matrix, word1, word2):
pos = []
sol = []
def backtrack(i,j):
pos.insert(0, (i,j))
if i==0 and j==0:
# This is a solution
print(str(pos) + ": " + str(sol))
if i>0 and edit_matrix[i-1,j] + 1 == edit_matrix[i,j]:
sol.insert(0, "insert " + word2[i])
backtrack(i-1,j)
sol.pop(0)
if j>0 and edit_matrix[i,j-1] + 1 == edit_matrix[i,j]:
sol.insert(0, "remove " + word1[j])
backtrack(i, j-1)
sol.pop(0);
if i>0 and j>0 and edit_matrix[i-1][j-1] + 1 if word1[j] != word2[i] else edit_matrix[i-1][j-1] == edit_matrix[i,j]:
if (word1[j] != word2[i]):
sol.insert(0, "replace " + word1[j] + " with " + word2[i])
else:
sol.insert(0, "skip")
backtrack(i-1,j-1)
sol.pop(0)
pos.pop(0)
word1 = ' ' + word1
word2 = ' ' + word2
backtrack(len(word2) - 1,len(word1) - 1)
An example output for
count, matrix = min_edit_count("apple", "paper")
get_solutions(matrix, "apple", "paper")
then looks as follows:
[(0, 0), (1, 0), (2, 1), (3, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['insert p', 'skip', 'skip', 'remove p', 'remove l', 'skip', 'insert r']
[(0, 0), (0, 1), (1, 2), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['remove a', 'skip', 'insert a', 'skip', 'remove l', 'skip', 'insert r']
[(0, 0), (1, 0), (2, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['insert p', 'skip', 'remove p', 'skip', 'remove l', 'skip', 'insert r']
[(0, 0), (1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['replace a with p', 'replace p with a', 'skip', 'remove l', 'skip', 'insert r']
[(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 5)]: ['remove a', 'skip', 'replace p with a', 'replace l with p', 'skip', 'insert r']
[(0, 0), (1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (5, 5)]: ['insert p', 'skip', 'skip', 'replace p with e', 'replace l with r', 'remove e']
[(0, 0), (1, 0), (2, 1), (3, 2), (4, 3), (4, 4), (5, 5)]: ['insert p', 'skip', 'skip', 'replace p with e', 'remove l', 'replace e with r']
[(0, 0), (1, 0), (2, 1), (3, 2), (3, 3), (4, 4), (5, 5)]: ['insert p', 'skip', 'skip', 'remove p', 'replace l with e', 'replace e with r']
[(0, 0), (0, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5)]: ['remove a', 'skip', 'insert a', 'skip', 'replace l with e', 'replace e with r']
[(0, 0), (1, 0), (2, 1), (2, 2), (3, 3), (4, 4), (5, 5)]: ['insert p', 'skip', 'remove p', 'skip', 'replace l with e', 'replace e with r']
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]: ['replace a with p', 'replace p with a', 'skip', 'replace l with e', 'replace e with r']
//fun: you can try to see why every line has the same length :D