In the codebase I have pandas objects (pd.DataFrame
/ pd.Series
) that contain custom objects.
It would simplify the codebase significantly if I could call a method or property from the underlying objects without resorting to .apply
.
To illustrate the point, consider a pandas series of "Car" objects.
class Car:
...
def max_speed(self)->float:
...
x = pd.Series([car1, car2, car3])
Currently I could get the average car speed by doing:
x.apply(lambda x: x.max_speed()).mean()
I think it'd be nice if I could skip the .apply(lambda x: x...)
and replace it with something like:
x.obj.max_speed().mean()
where obj
would be my custom accessor.
To further illustrate the point, consider a class Plane
class Plane:
def cruise_height(self)->float:
In the codebase I have:
x1 = pd.Series([car1, car2, car3])
x2 = pd.Series([plane1, plane2, plane3])
and I could get the average car speed / plane cruise height with
x1.apply(lambda x: x.max_speed()).mean()
x2.apply(lambda x: x.cruise_height()).mean()
I think it'd be more readable if I could do:
x1.obj.max_speed().mean()
x2.obj.cruise_height().mean()
I imagine this would be similar to how .str.
exposes the underlying string methods.
pd.Series(['Hello', 'World']).str.get(0) # returns ['H', 'W']
pd.Series(['Hello', 'World']).str.upper()
# etc
As per Pandas documentation, you can register custom accessors using special decorators, like this:
import pandas as pd
@pd.api.extensions.register_series_accessor("spec")
class SpecAccessor:
def __init__(self, pandas_obj: pd.Series):
self._obj = pandas_obj
for i in range(len(self._obj)):
for attr in self._obj[i].__class__.__dict__:
# set objects methods on the accessor
if not attr.startswith("__"):
ser = pd.Series(
[getattr(self._obj[i], attr)() for i in range(len(self._obj))]
)
setattr(self, attr, ser)
So that with the following classes and instances:
class Car:
def __init__(self, speed: float):
self._speed = speed
def max_speed(self) -> float:
return self._speed * 1.5
class Plane:
def __init__(self, max_height: float):
self._max_height = max_height
def cruise_height(self) -> float:
return self._max_height * 0.6
car1 = Car(10.0)
car2 = Car(30.5)
car3 = Car(50.9)
plane1 = Plane(5_000.0)
plane2 = Plane(3_000.5)
plane3 = Plane(9_000.9)
You can do:
print(pd.Series([car1, car2, car3]).spec.max_speed)
# Ouputs
0 15.00
1 45.75
2 76.35
dtype: float64
print(pd.Series([plane1, plane2, plane3]).spec.cruise_height)
# Outputs
0 3000.00
1 1800.30
2 5400.54
dtype: float64