The data set (x.test, y.test) is an exponential fit. I'm trying to fit a custom non-linear function and attached is the code. The regular points plot just fine but I'm unable to get the fit line to work. Any suggestions?
x.test <- runif(50,2,8)
y.test <- 0.5^(x.test)
df <- data.frame(x.test, y.test)
library(ggpmisc)
my.formula <- y ~ lambda/ (1 + aii*x)
ggplot(data = df, aes(x=x.test,y=y.test)) +
geom_point(shape=21, fill="white", color="red", size=3) +
stat_smooth(method="nls",formula = y.test ~ lambda/ (1 + aii*x.test), method.args=list(start=c(lambda=1000,aii=-816.39)),se=F,color="red") +
geom_smooth(method="lm", formula = my.formula , col = "red") + stat_poly_eq(formula = my.formula, aes(label = stringr::str_wrap(paste(..eq.label.., ..rr.label.., sep = "~~~"))), parse = TRUE, size = 2.5, col = "red") + stat_function(fun=function (x.test){
y.test ~ lambda/ (1 + aii*x.test)}, color = "blue")
A few things:
y
and x
as the variable names in the formula
argument to geom_smooth
, regardless of what the names are in your data setnls()
lm()
and stat_poly_eq()
are going to work as expected (or maybe at all) with a nonlinear formula ...(same as your code but using set.seed()
- probably not important here but good practice)
set.seed(101)
x.test <- runif(50,2,8)
y.test <- 0.5^(x.test)
df <- data.frame(x.test, y.test)
It's usually a good idea to troubleshoot by fitting any smoothing terms outside of ggplot2
, so you have fewer layers to dig through to find the problems:
nls(y.test ~ lambda/(1+ aii*x.test),
start = list(lambda=1000,aii=-816.39),
data = df)
Error in nls(y.test ~ lambda/(1 + aii * x.test), start = list(lambda = 1000, : singular gradient
OK, still doesn't work. Let's use glm()
to get better starting values: we use an inverse-link GLM:
1/y = b0 + b1*x
y = 1/(b0 + b1*x)
= (1/b0)/(1 + (b1/b0)*x)
So:
g1 <- glm(y.test ~ x.test, family = gaussian(link = "inverse"))
s0 <- with(as.list(coef(g1)), list(lambda = 1/`(Intercept)`, aii = x.test/`(Intercept)`))
This gives lambda = -0.09, aii = -0.638 (with a little bit more work we could probably also figure out how to eyeball these by looking at the starting point and scale of the curve).
ggplot(data = df, aes(x=x.test,y=y.test)) +
geom_point(shape=21, fill="white", color="red", size=3) +
stat_smooth(method="nls",
formula = y ~ lambda/ (1 + aii*x),
method.args=list(start=s0),
se=FALSE,color="red") +
stat_smooth(method = "glm",
formula = y ~ x,
method.args = list(gaussian(link = "inverse")),
color = "blue", linetype = 2)