I'm trying to solve the Codility FibFrog problem and I came up with the following solution:
def jumps_from(position, fb, A):
paths = set([])
for i in fb:
newPos = position + i
if newPos == len(A):
return set([-1])
elif newPos < len(A):
if A[newPos] == 1:
paths.add(newPos)
else: break
return paths
def solution(A):
if len(A) < 3: return 1
fibonaccis = fibonacci(len(A))
if len(A) + 1 in fibonaccis: return 1
paths = set([-1])
steps = 0
while True:
paths = set([idx for pos in paths for idx in jumps_from(pos, fibonaccis, A)])
if len(paths) == 0: return -1
if -1 in paths:
return steps + 1
steps += 1
return steps
def fibonacci(N):
arr = [0] * (N + 2)
arr[1] = 1
for i in range(2, N + 2):
arr[i] = arr[i-1] + arr[i-2]
return dict.fromkeys(arr[2:], 1)
Codility detects the runtime of this as O(N * log(N) ** N)
.
Codility Report: https://app.codility.com/demo/results/trainingJV7YAC-G3B/
I'm comparing this with the following solution, which scores 100% on Codility, and has runtime O(N * log(N))
:
def gen_fib(n):
fn = [0,1]
i = 2
s = 2
while s < n:
s = fn[i-2] + fn[i-1]
fn.append(s)
i+=1
return fn
def new_paths(A, n, last_pos, fn):
"""
Given an array A of len n.
From index last_pos which numbers in fn jump to a leaf?
returns list: set of indexes with leaves.
"""
paths = []
for f in fn:
new_pos = last_pos + f
if new_pos == n or (new_pos < n and A[new_pos]):
paths.append(new_pos)
return paths
def solution(A):
n = len(A)
if n < 3:
return 1
# A.append(1) # mark final jump
fn = sorted(gen_fib(100000)[2:]) # Fib numbers with 0, 1, 1, 2.. clipped to just 1, 2..
# print(fn)
paths = set([-1]) # locate all the leaves that are one fib jump from the start position.
jump = 1
while True:
# Considering each of the previous jump positions - How many leaves from there are one fib jump away
paths = set([idx for pos in paths for idx in new_paths(A, n, pos, fn)])
# no new jumps means game over!
if not paths:
break
# If there was a result in the new jumps record that
if n in paths:
return jump
jump += 1
return -1
I'm not sure why my solution differs in runtime, since the approach is exactly the same - compute all the indices you can jump to from -1
, and then compute all the indices you can jump to from the new positions, until you get to the other side of the river, or no new positions can be found.
Please refer to the first point in my previous answer.
If len(A) = 100000, you are calculating 100003 fibonacci numbers, while we only need fibonacci numbers which are less than 100k, which would be <30 of them.
The current fibonacci
function is still returning N
fibonacci numbers instead of just returning fibonacci numbers which are less than N
. For N=100k
, it should be just 25 numbers instead of over 100k.
Please update your fibonacci
function to this -
def fibonacci(N):
arr = [1, 1]
while arr[-1] < N:
arr.append(arr[-1] + arr[-2])
return dict.fromkeys(arr[1:], 1)
I just ran a test locally, and looks like your fibonacci
function takes ~1 sec to generate the first 100k fibonacci numbers, and that's the reason it might be failing the performance test, even though the rest of your code is optimal. I think you should be able to clear it with the required performance limits after correcting the fibonacci
function.