I use python to solve ODEs using scipy.integrate.odeint. Currently, I am working on a small project where I am using gsl in C++ to solve ODEs. I am trying to solve an ODE but the solver is returning -nan for each time point. Following is my code:
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
struct param_type {
double k;
double n;
double m;
double s;
};
int func (double t, const double y[], double f[], void *params)
{
(void)(t); /* avoid unused parameter warning */
struct param_type *my_params_pointer = (param_type *)params;
double k = my_params_pointer->k;
double n = my_params_pointer->n;
double m = my_params_pointer->m;
double s = my_params_pointer->s;
f[0] = m*k*pow(s,n)*pow((y[0]/(k*pow(s,n))),(m-1)/m);
return GSL_SUCCESS;
}
int * jac;
int main ()
{
struct param_type mu = {1e-07, 1.5, 0.3, 250};
gsl_odeiv2_system sys = {func, NULL, 1, &mu};
gsl_odeiv2_driver * d = gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk8pd, 1e-6, 1e-6, 0.0);
int i;
double t = 0.0, t1 = 10.0;
double step_size = 0.1;
double y[1] = { 1e-06 };
gsl_vector *time = gsl_vector_alloc ((t1 / step_size) + 1);
gsl_vector *fun_val = gsl_vector_alloc ((t1 / step_size) + 1);
for (i = 1; i <= t1/step_size; i++)
{
double ti = i * t1 / (t1 / step_size);
int status = gsl_odeiv2_driver_apply (d, &t, ti, y);
if (status != GSL_SUCCESS)
{
printf ("error, return value=%d\n", status);
break;
}
printf ("%.5e %.5e\n", t, y[0]);
gsl_vector_set (time, i, t);
gsl_vector_set (fun_val, i, y[0]);
}
gsl_vector_add(time, fun_val);
{
FILE * f = fopen ("test.dat", "w");
gsl_vector_fprintf (f, time, "%.5g");
fclose (f);
}
gsl_odeiv2_driver_free (d);
gsl_vector_free (time);
gsl_vector_free (fun_val);
return 0;
}
As mentioned here, I don't need jacobian for an explicit solver that's why I passed NULL pointer for the jac function. When I run the above code, I get -nan values at all time points.
To cross-check, I wrote the program in python which has the same function and same parameters, solved using scipy.integrate.odeint. It runs and provides a plausible answer. Following my python code:
import numpy as np
from scipy.integrate import odeint
def nb(y, t, *args):
k = args[0]
n = args[1]
m = args[2]
s = args[3]
return m*k*s**n*(y/(k*s**n))**((m-1)/m)
t = np.linspace(0,10,int(10/0.1))
y0 = 1e-06
k = 1e-07
n = 1.5
m = 0.3
s = 250
res = odeint(nb, y0, t, args=(k,n,m,s)).flatten()
print(res)
Could anyone please help me figure out, what I am doing wrong in the C++ code using GSL for solving the ODE?
Your problem is here:
f[0] = m*k*pow(s,n)*pow((y[0]/(k*pow(s,n))),(m-1)/m);
As the solver proceeds, it may want to sample negative values of y[0]
. In Python this makes no problem, in C++ it produces NANs.
To handle this, you can mimic Python's behavior:
auto sign = (y[0] < 0) ? -1.0 : 1.0;
f[0] = sign*m*k*pow(s,n)*pow((std::abs(y[0])/(k*pow(s,n))),(m-1)/m);
or even set sign
effectively to 1:
f[0] = m*k*pow(s,n)*pow((std::abs(y[0])/(k*pow(s,n))),(m-1)/m);
After all, raising negative values to noninteger powers is an error unless one considers complex numbers, which is not the case.
Please notice that y[0]
was secured with std::abs
.