I'm trying to implement a neural network in Python (Keras) that will predict the probability of multiple outcomes. At the moment I have the following code, for simplicity I reduced the problem to 3 inputs and 3 outputs:
import keras as k
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data_frame = pd.read_csv("123.csv")
input_names = ["Sex", "Age", "IQ"]
output_names = ["OUTPUT1", "OUTPUT2", "OUTPUT3"]
raw_input_data = data_frame[input_names]
raw_output_data = data_frame[output_names]
max_age = 100
encoders = {"Age": lambda age: [age/max_age],
"Sex": lambda gen: {"male": [0], "female": [1]}.get(gen),
"IQ": lambda iq_value: [iq_value],
"OUTPUT1": lambda output1_value: [output1_value],
"OUTPUT2": lambda output2_value: [output2_value],
"OUTPUT3": lambda output3_value: [output3_value]}
def dataframe_to_dict(df):
result = dict()
for column in df.columns:
values = data_frame[column].values
result[column] = values
return result
def make_supervised(df):
raw_input_data = data_frame[input_names]
raw_output_data = data_frame[output_names]
return {"inputs": dataframe_to_dict(raw_input_data),
"outputs": dataframe_to_dict(raw_output_data)}
def encode(data):
vectors = []
for data_name, data_values in data.items():
encoded = list(map(encoders[data_name], data_values))
vectors.append(encoded)
formatted = []
for vector_raw in list(zip(*vectors)):
vector = []
for element in vector_raw:
for e in element:
vector.append(e)
formatted.append(vector)
return formatted
supervised = make_supervised(data_frame)
encoded_inputs = np.array(encode(supervised["inputs"]))
encoded_outputs = np.array(encode(supervised["outputs"]))
train_x = encoded_inputs[:300]
train_y = encoded_outputs[:300]
test_x = encoded_inputs[300:]
test_y = encoded_outputs[300:]
model = k.Sequential()
model.add(k.layers.Dense(units=5, activation="relu"))
model.add(k.layers.Dense(units=1, activation="sigmoid"))
model.compile(loss="mse", optimizer="sgd", metrics=["accuracy"])
fit_results = model.fit(x=train_x, y=train_y, epochs=100, validation_split=0.2)
plt.title("Losses train/validation")
plt.plot(fit_results.history["loss"], label="Train")
plt.plot(fit_results.history["val_loss"], label="Validation")
plt.legend()
plt.show()
plt.title("Accuracies train/validation")
plt.plot(fit_results.history["accuracy"], label="Train")
plt.plot(fit_results.history["val_accuracy"], label="Validation")
plt.legend()
plt.show()
predicted_test = model.predict(test_x)
real_data = data_frame.iloc[300:][input_names+output_names]
real_data["POUTPUT1", "POUTPUT2", "POUTPUT3"] = predicted_test
print(real_data)
real_data.to_csv('C:/***/133.csv')
I need help implementing the output of probabilities for all 3 outcomes [POUTPUT1, POUTPUT2, POUTPUT3] (currently outputs only 1) and saving them in a table like this one:
You need to adapt input and output of your model, and change your sigmoid output activation for an activation that supports categories (softmax for example) Try something like this:
INPUT_DIM = 3
OUTPUT_DIM = 3
# first define your model
model = k.models.Sequential()
model.add(k.layers.Dense(8, activation='relu', input_dim = INPUT_DIM ))
model.add(k.layers.Dense(8, activation='relu'))
## you can add more layer if you want, to customize your model
model.add(k.layers.Dense(OUTPUT_DIM, activation='softmax'))
# then compile
model.compile(loss="mse", optimizer="sgd", metrics=["accuracy"])
# then fit
fit_results = model.fit(train_x, train_y, epochs=100, validation_split=0.2)
So, I tested your code with the changes I suggested, and the network seems to work. Try this :
import keras as k
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data_frame = pd.read_csv("123.csv")
input_names = ["Sex", "Age", "IQ"]
output_names = ["OUTPUT1", "OUTPUT2", "OUTPUT3"]
raw_input_data = data_frame[input_names]
raw_output_data = data_frame[output_names]
max_age = 100
encoders = {"Age": lambda age: [age/max_age],
"Sex": lambda gen: {"male": [0], "female": [1]}.get(gen),
"IQ": lambda iq_value: [iq_value],
"OUTPUT1": lambda output1_value: [output1_value],
"OUTPUT2": lambda output2_value: [output2_value],
"OUTPUT3": lambda output3_value: [output3_value]}
def dataframe_to_dict(df):
result = dict()
for column in df.columns:
values = data_frame[column].values
result[column] = values
return result
def make_supervised(df):
raw_input_data = data_frame[input_names]
raw_output_data = data_frame[output_names]
return {"inputs": dataframe_to_dict(raw_input_data),
"outputs": dataframe_to_dict(raw_output_data)}
def encode(data):
vectors = []
for data_name, data_values in data.items():
encoded = list(map(encoders[data_name], data_values))
vectors.append(encoded)
formatted = []
for vector_raw in list(zip(*vectors)):
vector = []
for element in vector_raw:
for e in element:
vector.append(e)
formatted.append(vector)
return formatted
supervised = make_supervised(data_frame)
encoded_inputs = np.array(encode(supervised["inputs"]))
encoded_outputs = np.array(encode(supervised["outputs"]))
print(encoded_inputs)
print(encoded_outputs)
train_x = encoded_inputs[:-10]
train_y = encoded_outputs[:-10]
test_x = encoded_inputs[-10:] # I changed this to fit my fake data
test_y = encoded_outputs[-10:] # but you can keep your code.
INPUT_DIM = 3
OUTPUT_DIM = 3
# first define your model
model = k.models.Sequential()
model.add(k.layers.Dense(8, activation='relu', input_dim = INPUT_DIM ))
model.add(k.layers.Dense(8, activation='relu'))
model.add(k.layers.Dense(OUTPUT_DIM, activation='softmax'))
# then compile
model.compile(loss="mse", optimizer="sgd", metrics=["accuracy"])
# then fit
fit_results = model.fit(train_x, train_y, epochs=100, validation_split=0.2)
# plt.title("Losses train/validation")
# plt.plot(fit_results.history["loss"], label="Train")
# plt.plot(fit_results.history["val_loss"], label="Validation")
# plt.legend()
# plt.show()
# plt.title("Accuracies train/validation")
# plt.plot(fit_results.history["accuracy"], label="Train")
# plt.plot(fit_results.history["val_accuracy"], label="Validation")
# plt.legend()
# plt.show()
predicted_test = model.predict(test_x)
print(predicted_test[0])
Then, when i print predicted_test[0]
, it gives me the outputs :
[[0.9967424 0.00114053 0.00211706]]
After that, I don't know exactly what you want to do with the dataframe, but I would try something like :
real_data = data_frame.iloc[-2:][input_names+output_names]
real_data.reset_index(inplace=True)
real_data["POUTPUT1"] = predicted_test[:,0]
real_data["POUTPUT2"] = predicted_test[:,1]
real_data["POUTPUT3"] = predicted_test[:,2]
print(real_data)
# then save it
real_data.to_csv(...)
3rd edit to solve your problem, I think it's ok now, the initial question is solve. You should close this topic and open a new one if you encounter a new issue.