I have a geopandas data frame containing ~500 linestring and a column named total
containing a number between 0 and 1.
I want to plot the linestrings on a folium map with a color that depends on the value of total
. Thus, I defined a colormap as follows:
colormap = cm.LinearColormap(colors=['lightblue','blue'])
and I am plotting everything with the following code:
m = folium.Map(zoom_start=10, tiles='CartoDB positron')
for _, r in gdf.iterrows():
geo_j = gpd.GeoSeries(r['geometry']).to_json()
geo_j = folium.GeoJson(data=geo_j,
style_function=lambda x:
{'lineColor':colormap(r['total']),
'color': colormap(r['total']),
'fill':True,
'opacity': 1,
'fillColor': colormap(r['total'])})
geo_j.add_to(m)
I tried with all the combinations of linecolor, color, fillcolor, opacity and whatsoever but all the lines are always plotted with the same color even if colormap(r['total']
works correctly (always different rgb are retrieved):
can anyone help?
import requests
import geopandas as gpd
import plotly.graph_objects as go
import itertools
import numpy as np
import pandas as pd
import shapely.geometry
# get geometry of london underground stations
gdf = gpd.GeoDataFrame.from_features(
requests.get(
"https://raw.githubusercontent.com/oobrien/vis/master/tube/data/tfl_stations.json"
).json()
)
# limit to zone 1 and stations that have larger number of lines going through them
gdf = (
gdf.loc[gdf["zone"].isin(["1", "2"]) & gdf["lines"].apply(len).gt(2)]
.reset_index(drop=True)
.rename(columns={"id": "tfl_id", "name": "id"})
)
# wanna join all valid combinations of stations...
combis = np.array(list(itertools.combinations(gdf.index, 2)))
# generate dataframe of all combinations of stations
gdf_c = (
gdf.loc[combis[:, 0], ["geometry", "id"]]
.assign(right=combis[:, 1])
.merge(
gdf.loc[:, ["geometry", "id"]],
left_on="right",
right_index=True,
suffixes=("_start_station", "_end_station"),
)
)
# generate linestrings between stations
gdf = gpd.GeoDataFrame(
geometry=gdf_c.select_dtypes("geometry").apply(shapely.geometry.LineString, axis=1),
data=gdf_c,
crs="EPSG:4326",
)
gdf["total"] = np.random.uniform(0, 1, len(gdf))
# now use explore that uses folium
gdf.explore("total", cmap="Blues", tiles="CartoDB positron")