In would like to plot density plots with certain values (for instance: median/mean/etc.). I also would like to display chosen values (for instance median) above the plotting area, so it would not interfere with the distributions itself. Also, in real life I have larger, more diverse dataframes (with much more categories) so I would like to spread the labels, so they would not interfere with each other (I want them to be readable and visually pleasing).
I found similar thread here: ggrepel labels outside (to the right) of ggplot area
And I tried to adopt this strategy (by fixing x coordinate instead of y and enlarging upper margin), but to no avail.
Here is the reprex dataframe:
set.seed(123)
group <- c(rep("control",367), rep("catalytic",276), rep("substrate",304))
sample_name <- c(rep("wt1",100), rep("wt2",75), rep("wt3",192), rep("cat1",221), rep("cat2",55), rep("sub1",84), rep("sub2",67), rep("sub3",153))
tail_length<- c(rnorm(100, mean=100, sd=3), rnorm(75, mean=98, sd=5),rnorm(192, mean=101, sd=2),rnorm(221, mean=88, sd=9),rnorm(55, mean=87, sd=6),rnorm(84, mean=182, sd=2),rnorm(67, mean=165, sd=9),rnorm(153, mean=153, sd=14))
tail_data <- data.frame(group, sample_name,tail_length)
Here is my plotting function:
plot_distribution_with_values <- function(input_data,value_to_show="mean", grouping_factor = "group", title="", limit="") {
#determine the center values to be plotted as x intercepting line(s)
center_values = input_data %>% dplyr::group_by(!!rlang::sym(grouping_factor)) %>% dplyr::summarize(median_value = median(tail_length,na.rm = TRUE),mean_value=mean(tail_length,na.rm=T))
#main core of the plot
plot_distribution <- ggplot2::ggplot(input_data, aes_string(x=tail_length,color=grouping_factor)) + geom_density(size=1, aes(y=..ndensity..)) + theme_bw() + scale_x_continuous(limits=c(0, as.numeric(limit))) + coord_cartesian(ylim = c(0, 1))
if (value_to_show=="median") {
center_value="median_value"
}
else if (value_to_show=="mean") {
center_value="mean_value"
}
#Plot settings (aesthetics, geoms, axes behavior etc.):
g.line <- ggplot2::geom_vline(data=center_values,aes(xintercept=!!rlang::sym(center_value),color=!!rlang::sym(grouping_factor)),linetype="longdash",show.legend = FALSE)
g.labs <- ggplot2::labs(title= "Tail lengths distribution",
x="tail length [units]",
y= "normalized density",
color=grouping_factor)
g.values <- ggrepel::geom_text_repel(data=center_values,aes(x=round(!!rlang::sym(center_value)),y=length(data),color=!!rlang::sym(grouping_factor),label=formatC(round(!!rlang::sym(center_value)),digits=1,format = "d")),size=4, direction = "x", segment.size = 0.4, show.legend =F, hjust =0, xlim = c(0,200), ylim = c(0, 1))
#Overall plotting configuration:
plot <- plot_distribution + g.line + g.labs + g.values
return(plot)
}
Here is the example function call:
plot_distribution_with_values(tail_data, value_to_show = "median", grouping_factor = "group", title = "Tail plot", limit=200)
And below is the output I get:
And this is the output I would love to have (sorry for the quality, edited in paint):
Also, if you change the grouping factor for "sample_name", then you will see more "crowded" plot, more similar to my irl data.
One option to achieve your desired result:
clip="off" in
coord_cartesian`y=1.05
for the labels (the max of data range + the default expansion of the scale by .05)min.segment.length=0
ylim
for the labelsNote: Getting your desired result you probably have to fiddle around with the values for the nudging, the ylim and the margin.
set.seed(123)
library(ggplot2)
library(ggrepel)
library(dplyr)
plot_distribution_with_values <- function(input_data,value_to_show="mean", grouping_factor = "group", title="", limit="") {
#determine the center values to be plotted as x intercepting line(s)
center_values = input_data %>% dplyr::group_by(!!rlang::sym(grouping_factor)) %>% dplyr::summarize(median_value = median(tail_length,na.rm = TRUE),mean_value=mean(tail_length,na.rm=T))
#main core of the plot
plot_distribution <- ggplot2::ggplot(input_data, aes_string(x=tail_length,color=grouping_factor)) +
geom_density(size=1, aes(y=..ndensity..)) + theme_bw() + scale_x_continuous(limits=c(0, as.numeric(limit))) +
coord_cartesian(clip = "off", ylim = c(0, 1))
if (value_to_show=="median") {
center_value="median_value"
}
else if (value_to_show=="mean") {
center_value="mean_value"
}
#Plot settings (aesthetics, geoms, axes behavior etc.):
g.line <- ggplot2::geom_vline(data=center_values,aes(xintercept=!!rlang::sym(center_value),
color=!!rlang::sym(grouping_factor)),
linetype="longdash",show.legend = FALSE)
g.labs <- ggplot2::labs(title= "Tail lengths distribution",
x="tail length [units]",
y= "normalized density",
color=grouping_factor)
g.values <- ggrepel::geom_text_repel(data=center_values,
aes(x=round(!!rlang::sym(center_value)),
y = 1.05, color=!!rlang::sym(grouping_factor),
label=formatC(round(!!rlang::sym(center_value)),digits=1,format = "d")),
size=4, direction = "x", segment.size = 0.4,
min.segment.length = 0, nudge_y = .15, nudge_x = -10,
show.legend =F, hjust =0, xlim = c(0,200),
ylim = c(0, 1.15))
#Overall plotting configuration:
plot <- plot_distribution + g.line + g.labs + g.values +
theme(plot.title = element_text(margin = margin(b = 4 * 5.5)))
return(plot)
}
plot_distribution_with_values(tail_data, value_to_show = "median", grouping_factor = "group", title = "Tail plot", limit=200)