I need to impute all missing dates between the available dates for each id's and then go symmetrically up and down to impute missing. Also, not always I need the average between two, eg: when I go 2 dates up and down and I see only 1 value, then I would impute that value.
df1 <- data.frame(id = c(11,11,11,11,11,11,11,11),
Date = c("2021-06-01", "2021-06-05", "2021-06-08", "2021-06-09", "2021-06-14", "2021-06-16", "2021-06-20", "2021-06-21"),
price = c(NA, NA,100, NA, 50, NA, 200, NA)
)
There is an excellent solution for missing imputation on a symmetrical iteration by @lovalery how to groupby and take mean of value by symetrically looping forward and backward on the date value in r
In the above solution, the date present is used, but this can be an issue when there is a large number of dates missing in between. Hence I wanted to insert all missing dates in between and then symmetrically move in both directions until I get at least 1 value in either direction, I need to retain it, if 2 values I need the mean.
Update: we also need to consider cases when the price is only present in the first date or in the last date. Also if same price is present in multiple dates
df1 <- data.frame(id = c(11,11,11,11,11,11,11,11,
12,12,12,
13,13,13),
Date = c("2021-06-01", "2021-06-05", "2021-06-08", "2021-06-09", "2021-06-14", "2021-06-16", "2021-06-20", "2021-06-21",
"2021-07-01","2021-07-03","2021-07-05",
"2021-08-01","2021-08-03","2021-08-05"),
price = c(200, NA,100, NA, 50, NA, 200, NA,
10,NA,NA,
NA,NA,20)
)
I used the function NA_imputations_dates_v2 by @lovalery
df1 <- setDT(df1)
df2 <- NA_imputations_dates_v2(df1)
df3 <- merge(df1,df2,by = c("id","Date"),all.x = T)
Please find below with a reprex one possible solution using the data.table
and padr
libraries.
I built a function to make it easier to use.
Reprex
df1 <- data.frame(id = c(11,11,11,11,11,11,11,11),
Date = c("2021-06-01", "2021-06-05", "2021-06-08", "2021-06-09", "2021-06-14", "2021-06-16", "2021-06-20", "2021-06-21"),
price = c(NA, NA,100, NA, 50, NA, 200, NA))
NA_imputations_dates()
functionlibrary(data.table)
library(padr)
NA_imputations_dates <- function(x) {
setDT(x)[, Date := as.Date(Date)]
x <- pad(x, interval = "day", group = "id")
setDT(x)[, rows := .I]
z <- x[, .I[!is.na(price)]]
id_1 <- z[-length(z)]
id_2 <- z[-1]
values <- x[z, .(price = price, id = id)]
values_1 <- values[-nrow(values)]
names(values_1) <- c("price_1", "id_o1")
values_2 <- values[-1]
names(values_2) <- c("price_2", "id_o2")
subtract <- z[-1] - z[-length(z)]
r <- data.table(id_1, values_1, id_2, values_2, subtract)
r <- r[, `:=` (id_mean = fifelse(subtract > 2 & subtract %% 2 == 0, id_1+(subtract/2), (id_1+id_2)/2),
mean = fifelse(subtract >= 2 & subtract %% 2 == 0 & id_o1 == id_o2, (price_1+price_2)/2, NA_real_))
][, `:=` (price_1 = NULL, id_1 = NULL, id_o1 = NULL, id_2 = NULL, price_2 = NULL, id_o2 = NULL, subtract = NULL)
][x, on = .(id_mean = rows)][, dummy := cumsum(!is.na(mean)), by = .(id)]
h <- r[, .(price = na.omit(price)), by = .(dummy)]
Results <- r[, price := NULL
][h, on = .(dummy)
][, price := fifelse(!is.na(mean), mean, price)
][, `:=` (id_mean = NULL, mean = NULL, dummy = NULL)][]
return(Results)
}
NA_imputations_dates()
functionNA_imputations_dates(df1)
#> id Date price
#> 1: 11 2021-06-01 100
#> 2: 11 2021-06-02 100
#> 3: 11 2021-06-03 100
#> 4: 11 2021-06-04 100
#> 5: 11 2021-06-05 100
#> 6: 11 2021-06-06 100
#> 7: 11 2021-06-07 100
#> 8: 11 2021-06-08 100
#> 9: 11 2021-06-09 100
#> 10: 11 2021-06-10 100
#> 11: 11 2021-06-11 75
#> 12: 11 2021-06-12 50
#> 13: 11 2021-06-13 50
#> 14: 11 2021-06-14 50
#> 15: 11 2021-06-15 50
#> 16: 11 2021-06-16 50
#> 17: 11 2021-06-17 125
#> 18: 11 2021-06-18 200
#> 19: 11 2021-06-19 200
#> 20: 11 2021-06-20 200
#> 21: 11 2021-06-21 200
#> id Date price
Created on 2021-12-12 by the reprex package (v2.0.1)
As a follow-up of your comment, please find below the modified version of the function (i.e. NA_imputations_dates_v2()
) to deal with the more general case provided by your new dataset (i.e. dataset #2
).
Reprex
df1 <- data.frame(id = c(11,11,11,11,11,11,11,11,
12,12,12,
13,13,13),
Date = c("2021-06-01", "2021-06-05", "2021-06-08", "2021-06-09", "2021-06-14", "2021-06-16", "2021-06-20", "2021-06-21",
"2021-07-01","2021-07-03","2021-07-05",
"2021-08-01","2021-08-03","2021-08-05"),
price = c(NA, NA,100, NA, 50, NA, 200, NA,
10,NA,NA,
NA,NA,20))
NA_imputations_dates_v2()
functionlibrary(data.table)
library(padr)
NA_imputations_dates_v2 <- function(x) {
setDT(x)[, Date := as.Date(Date)]
x <- pad(x, interval = "day", group = "id")
setDT(x)[, rows := .I]
z <- x[, .I[!is.na(price)]]
id_1 <- z[-length(z)]
id_2 <- z[-1]
values <- x[z, .(price = price, id = id)]
values_1 <- values[-nrow(values)]
names(values_1) <- c("price_1", "id_o1")
values_2 <- values[-1]
names(values_2) <- c("price_2", "id_o2")
subtract <- z[-1] - z[-length(z)]
r <- data.table(id_1, values_1, id_2, values_2, subtract)
r <- r[, `:=` (id_mean = fifelse(subtract > 2 & subtract %% 2 == 0 & id_o1 == id_o2, id_1+(subtract/2), NA_real_),
mean = fifelse(subtract >= 2 & subtract %% 2 == 0 & id_o1 == id_o2, (price_1+price_2)/2, NA_real_))
][, `:=` (price_1 = NULL, id_1 = NULL, id_o1 = NULL, id_2 = NULL, price_2 = NULL, id_o2 = NULL, subtract = NULL)
][x, on = .(id_mean = rows)][, dummy := cumsum(!is.na(mean)), by = .(id)]
h <- r[, .(price = na.omit(price)), by = .(dummy, id)]
Results <- r[, price := NULL
][h, on = .(dummy, id)
][, price := fifelse(!is.na(mean), mean, price)
][, `:=` (id_mean = NULL, mean = NULL, dummy = NULL)][]
return(Results)
}
NA_imputations_dates_v2()
functionNA_imputations_dates_v2(df1)
#> id Date price
#> 1: 11 2021-06-01 100
#> 2: 11 2021-06-02 100
#> 3: 11 2021-06-03 100
#> 4: 11 2021-06-04 100
#> 5: 11 2021-06-05 100
#> 6: 11 2021-06-06 100
#> 7: 11 2021-06-07 100
#> 8: 11 2021-06-08 100
#> 9: 11 2021-06-09 100
#> 10: 11 2021-06-10 100
#> 11: 11 2021-06-11 75
#> 12: 11 2021-06-12 50
#> 13: 11 2021-06-13 50
#> 14: 11 2021-06-14 50
#> 15: 11 2021-06-15 50
#> 16: 11 2021-06-16 50
#> 17: 11 2021-06-17 125
#> 18: 11 2021-06-18 200
#> 19: 11 2021-06-19 200
#> 20: 11 2021-06-20 200
#> 21: 11 2021-06-21 200
#> 22: 12 2021-07-01 10
#> 23: 12 2021-07-02 10
#> 24: 12 2021-07-03 10
#> 25: 12 2021-07-04 10
#> 26: 12 2021-07-05 10
#> 27: 13 2021-08-01 20
#> 28: 13 2021-08-02 20
#> 29: 13 2021-08-03 20
#> 30: 13 2021-08-04 20
#> 31: 13 2021-08-05 20
#> id Date price
Created on 2021-12-14 by the reprex package (v2.0.1)
As a follow-up of your second comment, please find below the modified version of the function (i.e. NA_imputations_dates_v3()
) to deal with the more general case provided by your new dataset (i.e. dataset #3
).
Reprex
df1 <- data.frame(id = c(11,11,11,11,11,11,11,11,
12,12,12,
13,13,13),
Date = c("2021-06-01", "2021-06-05", "2021-06-08", "2021-06-09", "2021-06-14", "2021-06-16", "2021-06-20", "2021-06-21",
"2021-07-01","2021-07-03","2021-07-05",
"2021-08-01","2021-08-03","2021-08-05"),
price = c(NA, NA,100, NA, 50, NA, 200, 200,
10,NA,NA,
NA,NA,20))
NA_imputations_dates_v3()
functionlibrary(data.table)
library(padr)
NA_imputations_dates_v3 <- function(x) {
setDT(x)[, Date := as.Date(Date)]
x <- pad(x, interval = "day", group = "id")
setDT(x)[, rows := .I]
z <- x[, .I[!is.na(price)]]
id_1 <- z[-length(z)]
id_2 <- z[-1]
values <- x[z, .(price = price, id = id)]
values_1 <- values[-nrow(values)]
names(values_1) <- c("price_1", "id_o1")
values_2 <- values[-1]
names(values_2) <- c("price_2", "id_o2")
subtract <- z[-1] - z[-length(z)]
r <- data.table(id_1, values_1, id_2, values_2, subtract)
r <- r[, `:=` (id_mean = fifelse(subtract > 2 & subtract %% 2 == 0 & id_o1 == id_o2, id_1+(subtract/2), NA_real_),
mean = fifelse(subtract >= 2 & subtract %% 2 == 0 & id_o1 == id_o2, (price_1+price_2)/2, NA_real_))
][, `:=` (price_1 = NULL, id_1 = NULL, id_o1 = NULL, id_2 = NULL, price_2 = NULL, id_o2 = NULL, subtract = NULL)
][x, on = .(id_mean = rows)][, dummy := cumsum(!is.na(mean)), by = .(id)]
r <- r[, price_lag := shift(price, 1), by = .(dummy, id)]
h <- r[, .(price = na.omit(price)), by = .(dummy, id, price_lag)]
h <- h[h[,.I[is.na(price_lag)]]][, price_lag := NULL]
Results <- r[, `:=` (price = NULL, price_lag = NULL)
][h, on = .(dummy, id)
][, price := fifelse(!is.na(mean), mean, price)
][, `:=` (id_mean = NULL, mean = NULL, dummy = NULL)][]
return(Results)
}
NA_imputations_dates_v3()
functionNA_imputations_dates_v3(df1)
#> id Date price
#> 1: 11 2021-06-01 100
#> 2: 11 2021-06-02 100
#> 3: 11 2021-06-03 100
#> 4: 11 2021-06-04 100
#> 5: 11 2021-06-05 100
#> 6: 11 2021-06-06 100
#> 7: 11 2021-06-07 100
#> 8: 11 2021-06-08 100
#> 9: 11 2021-06-09 100
#> 10: 11 2021-06-10 100
#> 11: 11 2021-06-11 75
#> 12: 11 2021-06-12 50
#> 13: 11 2021-06-13 50
#> 14: 11 2021-06-14 50
#> 15: 11 2021-06-15 50
#> 16: 11 2021-06-16 50
#> 17: 11 2021-06-17 125
#> 18: 11 2021-06-18 200
#> 19: 11 2021-06-19 200
#> 20: 11 2021-06-20 200
#> 21: 11 2021-06-21 200
#> 22: 12 2021-07-01 10
#> 23: 12 2021-07-02 10
#> 24: 12 2021-07-03 10
#> 25: 12 2021-07-04 10
#> 26: 12 2021-07-05 10
#> 27: 13 2021-08-01 20
#> 28: 13 2021-08-02 20
#> 29: 13 2021-08-03 20
#> 30: 13 2021-08-04 20
#> 31: 13 2021-08-05 20
#> id Date price
Created on 2021-12-14 by the reprex package (v2.0.1)