I have the following sample data:
custom_date_parser = lambda x:datetime.strptime(x, "%m/%d/%Y %H:%M")
df = pd.read_csv('sample.csv', index_col = 0, parse_dates = ['date'], date_parser = custom_date_parser)
| date | value |
| ------------------- | --------|
| 2021-12-06 08:30:00 | 100 |
| 2021-12-06 08:35:00 | 150 |
| 2021-12-06 08:40:00 | 120 |
| 2021-12-06 08:45:00 | 90 |
| 2021-12-06 08:50:00 | 80 |
...................................
| 2021-12-09 08:30:00 | 220 |
| 2021-12-09 08:35:00 | 250 |
| 2021-12-09 08:40:00 | 260 |
| 2021-12-09 08:45:00 | 290 |
| 2021-12-09 08:50:00 | 300 |
I want to loop through the dataframe and print the number in 'value' column if the hours and minutes '08:40:00' are in the index column. I've tried funny stuff like:
for i in df.index:
if '08:40:00' in [i]:
print(df.value[i])
Since you've parsed it into a datetime object, you can check the hour and the minute, filter the dataframe to those rows that match and print the corresponding values.
for x in df.loc[(df['date'].dt.hour.eq(8)) & (df['date'].dt.minute.eq(40))]['value']:
print(x)