While studying Selection Sort, I came across a variation known as Bingo Sort. According to this dictionary entry here, Bingo Sort is:
A variant of selection sort that orders items by first finding the least value, then repeatedly moving all items with that value to their final location and find the least value for the next pass.
Based on the definition above, I came up with the following implementation in Python:
def bingo_sort(array, ascending=True):
from operator import lt, gt
def comp(x, y, func):
return func(x, y)
i = 0
while i < len(array):
min_value = array[i]
j = i + 1
for k in range(i + 1, len(array), 1):
if comp(array[k], min_value, (lt if ascending else gt)):
min_value = array[k]
array[i], array[k] = array[k], array[i]
elif array[k] == min_value:
array[j], array[k] = array[k], array[j]
j += 1
i = j
return array
I know that this implementation is problematic. When I run the algorithm on an extremely small array, I get a correctly sorted array. However, running the algorithm with a larger array results in an array that is mostly sorted with incorrect placements here and there. To replicate the issue in Python, the algorithm can be ran on the following input:
test_data = [[randint(0, 101) for i in range(0, 101)],
[uniform(0, 101) for i in range(0, 101)],
["a", "aa", "aaaaaa", "aa", "aaa"],
[5, 5.6],
[3, 2, 4, 1, 5, 6, 7, 8, 9]]
for dataset in test_data:
print(dataset)
print(bingo_sort(dataset, ascending=True, mutation=True))
print("\n")
I cannot for the life of me realize where the fault is at since I've been looking at this algorithm too long and I am not really proficient at these things. I could not find an implementation of Bingo Sort online except an undergraduate graduation project written in 2020. Any help that can point me in the right direction would be greatly appreciated.
I think your main problem is that you're trying to set min_value in your first conditional statement and then to swap based on that same min_value you've just set in your second conditional statement. These processes are supposed to be staggered: the way bingo sort should work is you find the min_value in one iteration, and in the next iteration you swap all instances of that min_value to the front while also finding the next min_value for the following iteration. In this way, min_value should only get changed at the end of every iteration, not during it. When you change the value you're swapping to the front over the course of a given iteration, you can end up unintentionally shuffling things a bit.
I have an implementation of this below if you want to refer to something, with a few notes: since you're allowing a custom comparator, I renamed min_value to swap_value as we're not always grabbing the min, and I modified how the comparator is defined/passed into the function to make the algorithm more flexible. Also, you don't really need three indexes (I think there were even a couple bugs here), so I collapsed i and j into swap_idx, and renamed k to cur_idx. Finally, because of how swapping a given swap_val and finding the next_swap_val is to be staggered, you need to find the initial swap_val up front. I'm using a reduce statement for that, but you could just use another loop over the whole array there; they're equivalent. Here's the code:
from operator import lt, gt
from functools import reduce
def bingo_sort(array, comp=lt):
if len(array) <= 1:
return array
# get the initial swap value as determined by comp
swap_val = reduce(lambda val, cur: cur if comp(cur, val) else val, array)
swap_idx = 0 # set the inital swap_idx to 0
while swap_idx < len(array):
cur_idx = swap_idx
next_swap_val = array[cur_idx]
while cur_idx < len(array):
if comp(array[cur_idx], next_swap_val): # find next swap value
next_swap_val = array[cur_idx]
if array[cur_idx] == swap_val: # swap swap_vals to front of the array
array[swap_idx], array[cur_idx] = array[cur_idx], array[swap_idx]
swap_idx += 1
cur_idx += 1
swap_val = next_swap_val
return array
In general, the complexity of this algorithm depends on how many duplicate values get processed, and when they get processed. This is because every time k duplicate values get processed during a given iteration, the length of the inner loop is decreased by k for all subsequent iterations. Performance is therefore optimized when large clusters of duplicate values are processed early on (as when the smallest values of the array contain many duplicates). From this, there are basically two ways you could analyze the complexity of the algorithm: You could analyze it in terms of where the duplicate values tend to appear in the final sorted array (Type 1), or you could assume the clusters of duplicate values are randomly distributed through the sorted array and analyze complexity in terms of the average size of duplicate clusters (that is, in terms of the magnitude of m relative to n: Type 2).
The definition you linked uses the first type of analysis (based on where duplicates tend to appear) to derive best = Theta(n+m^2), average = Theta(nm), worst = Theta(nm). The second type of analysis produces best = Theta(n), average = Theta(nm), worst = Theta(n^2) as you vary m from Theta(1) to Theta(m) to Theta(n).
In the best Type 1 case, all duplicates will be among the smallest elements of the array, such that the run-time of the inner loop quickly decreases to O(m), and the final iterations of the algorithm proceed as an O(m^2) selection sort. However, there is still the up-front O(n) pass to select the initial swap value, so the overall complexity is O(n + m^2).
In the worst Type 1 case, all duplicates will be among the largest elements of the array. The length of the inner loop isn't substantially shortened until the last iterations of the algorithm, such that we achieve a run-time looking something like n + n-1 + n-2 .... + n-m. This is a sum of m O(n) values, giving us O(nm) total run-time.
In the average Type 1 case (and for all Type 2 cases), we don't assume that the clusters of duplicate values are biased towards the front or back of the sorted array. We take it that the m clusters of duplicate values are randomly distributed through the array in terms of their position and their size. Under this analysis, we expect that after the initial O(n) pass to find the first swap value, each of the m iterations of the outer loop reduce the length of the inner loop by approximately n/m. This leads to an expression of the overall run-time for unknown m and randomly distributed data as:
We can use this expression for the average case run-time with randomly distributed data and unknown m, Theta(nm), as the average Type 2 run-time, and it also directly gives us the best and worst case run-times based on how we might vary the magnitude of n.
In the best Type 2 case, m might just be some constant value independent of n. if we have m=Theta(1) randomly distributed duplicate clusters, the best case run time is then Theta(n*Theta(1))) = Theta(n). For example as you would see O(2n) = O(n) performance from bingo-sort with just one unique value (one pass to find the find value, one pass to swap every single value to the front), and this O(n) asymptotic complexity still holds if m is bounded by any constant.
However in the worst Type 2 case we could have m=Theta(n), and bingo sort essentially devolves into O(n^2) selection sort. This is clearly the case for m = n, but if the amount the inner-loop's run-time is expected to decrease by with each iteration, n/m, is any constant value, which is the case for any m value in Theta(n), we still see O(n^2) complexity.