Search code examples
rdplyrtidyversepurrrmapply

mapply doesn't display variable names


I was trying to do some contingency tables but I don't know how to pull out the column names when I use mapply function.

This is an example of the data:

set.seed(123)  ## for sake of reproducibility
n <- 10
dat <- data.frame(balance=factor(paste("DM", 1:n)), 
                  credit_history=sample(c("repaid", "critical"), 10, replace = TRUE),
                  purpose=sample(c("yes", "no"), 10, replace = TRUE),
                  employment_rate=sample(c("0-1 yrs", "1-4 yrs", ">4 yrs"), 10, replace = TRUE),
                  personal_status=sample(c("married", "single"), 10, replace=TRUE),
                  other_debtors=sample(c("guarantor", "none"), 10, replace= TRUE),
                  default=sample(c("yes", "no"), 10, replace = TRUE))

dt1 <- dat[ , c(1:6)]
dt2 <- dat[ , "default"]

mapply(function(x, y) table(x, y), dt1, MoreArgs=list(dt2))

The code above just show "x" and "y" and I would like to display e.g. "default" and "balance". Can someone give me some advice?


Solution

  • 1) Use the dnn argument of table:

    f <- function(...) table(..., dnn = c("balance", "default"))
    mapply(f, dt1, MoreArgs=list(dt2))
    

    giving:

    $balance
           default
    balance no yes
      DM 1   0   1
      DM 10  1   0
      DM 2   0   1
      DM 3   0   1
      DM 4   1   0
      DM 5   1   0
      DM 6   0   1
      DM 7   1   0
      DM 8   0   1
      DM 9   0   1
    
    $credit_history
              default
    balance    no yes
      critical  2   2
      repaid    2   4
    
    $purpose
           default
    balance no yes
        no   2   3
        yes  2   3
    
    $employment_rate
             default
    balance   no yes
      >4 yrs   2   0
      0-1 yrs  1   4
      1-4 yrs  1   2
    
    $personal_status
             default
    balance   no yes
      married  3   3
      single   1   3
    
    $other_debtors
               default
    balance     no yes
      guarantor  4   3
      none       0   3
    

    2) or maybe you wanted this:

    f <- function(x, y, z) table(x, z, dnn = c(y, "default"))
    mapply(f, dt1, names(dt1), MoreArgs=list(dt2))
    

    giving:

    $balance
           default
    balance no yes
      DM 1   0   1
      DM 10  1   0
      DM 2   0   1
      DM 3   0   1
      DM 4   1   0
      DM 5   1   0
      DM 6   0   1
      DM 7   1   0
      DM 8   0   1
      DM 9   0   1
    
    $credit_history
                  default
    credit_history no yes
          critical  2   2
          repaid    2   4
    
    $purpose
           default
    purpose no yes
        no   2   3
        yes  2   3
    
    $employment_rate
                   default
    employment_rate no yes
            >4 yrs   2   0
            0-1 yrs  1   4
            1-4 yrs  1   2
    
    $personal_status
                   default
    personal_status no yes
            married  3   3
            single   1   3
    
    $other_debtors
                 default
    other_debtors no yes
        guarantor  4   3
        none       0   3
    

    3) This output as a table appears as Table 1 in many papers and there are many R packages for producing such tables. A long list of such packages can be found here: https://github.com/kaz-yos/tableone#similar-or-complementary-projects . We show the use of one of them, the tableone package, below but try all of those listed if desired.

    library(tableone)
    
    dat2 <- transform(dat, balance = factor(as.character(balance), 
      levels = paste("DM", 1:10)))
    tab1 <- CreateTableOne(strata = "default", data = dat2)
    print(tab1, showAllLevels = TRUE)
    

    giving:

                         Stratified by default
                          level     no         yes       p      test
      n                             4          6                    
      balance (%)         DM 1      0 (  0.0)  1 (16.7)   0.350     
                          DM 2      0 (  0.0)  1 (16.7)             
                          DM 3      0 (  0.0)  1 (16.7)             
                          DM 4      1 ( 25.0)  0 ( 0.0)             
                          DM 5      1 ( 25.0)  0 ( 0.0)             
                          DM 6      0 (  0.0)  1 (16.7)             
                          DM 7      1 ( 25.0)  0 ( 0.0)             
                          DM 8      0 (  0.0)  1 (16.7)             
                          DM 9      0 (  0.0)  1 (16.7)             
                          DM 10     1 ( 25.0)  0 ( 0.0)             
      credit_history (%)  critical  2 ( 50.0)  2 (33.3)   1.000     
                          repaid    2 ( 50.0)  4 (66.7)             
      purpose (%)         no        2 ( 50.0)  3 (50.0)   1.000     
                          yes       2 ( 50.0)  3 (50.0)             
      employment_rate (%) >4 yrs    2 ( 50.0)  0 ( 0.0)   0.143     
                          0-1 yrs   1 ( 25.0)  4 (66.7)             
                          1-4 yrs   1 ( 25.0)  2 (33.3)             
      personal_status (%) married   3 ( 75.0)  3 (50.0)   0.895     
                          single    1 ( 25.0)  3 (50.0)             
      other_debtors (%)   guarantor 4 (100.0)  3 (50.0)   0.324     
                          none      0 (  0.0)  3 (50.0)