I have type error when I run for training on sagemaker by using xgboost conatiner. Please advise me to fix the issue.
container = 'southeast-2','783357654285.dkr.ecr.ap-southeast-2.amazonaws.com/sagemaker- xgboost:latest'`
train_input = TrainingInput(s3_data='s3://{}/train'.format(bucket, prefix), content_type='csv')
validation_input = TrainingInput(s3_data='s3://{}/validation/'.format(bucket, prefix), content_type='csv')
sess = sagemaker.Session()
xgb = sagemaker.estimator.Estimator(
container,
role,
instance_count=1,
instance_type='ml.t2.medium',
output_path='s3://{}/output'.format(bucket, prefix),
sagemaker_session=sess
)
xgb.set_hyperparameters(
max_depth=5,
eta=0.1,
gamma=4,
min_child_weight=6,
subsample=0.8,
silent=0,
objective="binary:logistic",
num_round=25,
)
xgb.fit({"train": train_input, "validation": validation_input})
TypeError Traceback (most recent call last) in 21 ) 22 ---> 23 xgb.fit({"train": train_input, "validation": validation_input})
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sagemaker/estimator.py in fit(self, inputs, wait, logs, job_name, experiment_config)
685 * TrialComponentDisplayName
is used for display in Studio.
686 """
--> 687 self._prepare_for_training(job_name=job_name)
688
689 self.latest_training_job = _TrainingJob.start_new(self, inputs, experiment_config)
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sagemaker/estimator.py in _prepare_for_training(self, job_name) 446 constructor if applicable. 447 """ --> 448 self._current_job_name = self._get_or_create_name(job_name) 449 450 # if output_path was specified we use it otherwise initialize here.
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sagemaker/estimator.py in _get_or_create_name(self, name) 435 return name 436 --> 437 self._ensure_base_job_name() 438 return name_from_base(self.base_job_name) 439
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sagemaker/estimator.py in _ensure_base_job_name(self) 420 # honor supplied base_job_name or generate it 421 if self.base_job_name is None: --> 422 self.base_job_name = base_name_from_image(self.training_image_uri()) 423 424 def _get_or_create_name(self, name=None):
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sagemaker/utils.py in base_name_from_image(image) 95 str: Algorithm name, as extracted from the image name. 96 """ ---> 97 m = re.match("^(.+/)?([^:/]+)(:[^:]+)?$", image) 98 algo_name = m.group(2) if m else image 99 return algo_name
~/anaconda3/envs/mxnet_p36/lib/python3.6/re.py in match(pattern, string, flags) 170 """Try to apply the pattern at the start of the string, returning 171 a match object, or None if no match was found.""" --> 172 return _compile(pattern, flags).match(string) 173 174 def fullmatch(pattern, string, flags=0):
TypeError: expected string or bytes-like object
import sagemaker
from sagemaker.inputs import TrainingInput
from sagemaker.serializers import CSVSerializer
from sagemaker.session import TrainingInput
from sagemaker import image_uris
from sagemaker.session import Session
# initialize hyperparameters
hyperparameters = {
"max_depth":"5",
"eta":"0.1",
"gamma":"4",
"min_child_weight":"6",
"subsample":"0.7",
"objective":"binary:logistic",
"num_round":"25"}
# set an output path where the trained model will be saved
bucket = sagemaker.Session().default_bucket()
output_path = 's3://{}/{}/output'.format(bucket, 'rain-xgb-built-in-algo')
# this line automatically looks for the XGBoost image URI and builds an
XGBoost container.
# specify the repo_version depending on your preference.
xgboost_container = sagemaker.image_uris.retrieve("xgboost", 'ap-southeast-
2', "1.3-1")
# construct a SageMaker estimator that calls the xgboost-container
estimator = sagemaker.estimator.Estimator(image_uri=xgboost_container,
hyperparameters=hyperparameters,
role=sagemaker.get_execution_role(),
instance_count=1,
instance_type='ml.m5.large',
volume_size=5, # 5 GB
output_path=output_path)
# define the data type and paths to the training and validation datasets
train_input = TrainingInput("s3://{}/{}/".format(bucket,'train'),
content_type='csv')
validation_input = TrainingInput("s3://{}/{}".format(bucket,'validation'),
content_type='csv')
# execute the XGBoost training job
estimator.fit({'train': train_input, 'validation': validation_input})
I have rewritten as above and could run training. thank you !