I'm trying to understand CI/CD strategy.
Many CI/CD articles mention that it's a automation services of build, test, deploy phase.
I would like to know, does a CI/CD concept have any prerequisite step(s)?
For example, if I make a simple tool that automatically builds and deploys, but test step is manual - can this be considered CI/CD?
There's a minor point of minutia that should be mentioned first: the "D" in "CI/CD" can either mean "Delivery" or "Deployment". For the sake of this question, we'll accept the two terms as relatively interchangeable -- but be aware that others may apply a more narrow definition, which may be slightly different depending on which "D" you mean, specifically. For additional context, see: Continuous Integration vs. Continuous Delivery vs. Continuous Deployment
For example, if I make a simple tool that automatically builds and deploys, but test step is manual - can this be considered CI/CD?
Let's break this down. Beforehand, let's establish what can be considered "CI/CD". Easy enough: if your (automated) process is practicing both CI (continuous integration) and CD (continuous deployment), then we can consider the solution as being some form of "CI/CD".
We'll need some definitions for CI and CD (see above link), which may vary by opinion. But if the question is whether this can be considered CI/CD, we can proceed on the lowest common denominator / bare minimum of popular/accepted definitions and apply those definitions liberally as they relate to the principles of CI/CD.
With that context, let's proceed to determine whether the constituent components are present.
Yes. Continuous Integration is being practiced in this scenario. Continuous integration, in its most basic sense, is making sure that your ongoing work is regularly (continually) integrated (tested).
The whole idea is to combat the consequences of integrating (testing) too infrequently. If you do many many changes and never try to build/test the software, any of those changes may have very well broken the build, but you won't know until the point in time where integration (testing) occurs.
You are regularly integrating your changes and making sure the software still builds. This is unequivocally CI in practice.
One may make an objection to the effect of "if you're not running what is traditionally thought of as tests (unit|integration|smoke|etc) as part of your automated process, it's not CI" -- this is a demonstrably false statement.
Even though in this case you mention that your "test" steps would be manual, it's still fair to say that simply building your application would be sufficient to meet the basic definition of a "test" in the sense of continuous integration. Successfully building (e.g. compiling) your code is, in itself IS a test. You are effectively testing "can it build". If your code change breaks the compile/build process, your CI process will tell you so right after committing your code -- that's CI in action.
Just like code changes may break a unit test, they can also break the compilation process -- automating your build tests that your changes did not break the build and is, therefore, a kind of continuous integration, without question.
Sure, your product can be broken by your changes even if it compiles successfully. It may even be the case that those software defects would have been caught by sufficient unit testing. But the same could be said of projects with proper unit tests, even projects with "100% code coverage". We certainly don't consider projects with test gaps as not practicing CI. The size of the test gap doesn't make the distinction between CI and non-CI; it's irrelevant to the definition.
Bottom line: building your software exercises (integrates/tests) your code changes, if even only in a minimally significant degree. Doing this on a continuous basis is a form of continuous integration.
Yes. It is plain to see in this scenario that, if you are deploying/delivering your software to whatever its 'production environment' is in an automated fashion then you have the "CD" component to CI/CD, at least in some minimal degree. The fact that your tests may be manual is not consequential.
Similar to the above, reasonable people could disagree on the effectiveness of the implementation depending on the details, but one would not be able to make the case that this practice is non-CD, by definition.
Yes. Both elements of CI and CD are present in at least a minimum degree. The practices used probably can't reasonably be called non-CI or non-CD. Therefore, it should be concluded this described practice can be considered "CI/CD".
I think it goes without saying that the described CI/CD process has gaps and could benefit from improvement and, with the lack of automated tests and other features, doesn't reap all the possible benefits of a robust CI/CD process could offer. However, this doesn't render the process non-CICD by any means. It's certainly CI/CD in practice; whether it's a particularly good or robust CI/CD practice is a subject of opinion.
does CI/CD concept have any prerequisites step(s)?
No, there are no specific prerequisites (like writing automated software tests, for example) to applying CI/CD concepts. You can apply both CI and CD independently of one another without any prerequisites.
To further illustrate, let's think of an even more minimal project with "CI/CD"...
CD could be as simple as committing to the main branch repository of a GitHub Pages. If that same Pages repo, for example, uses Jekyll, then you have CI, too, as GitHub will build your project automatically in addition to deploying it and inform you of build errors when they occur.
In this basic example, the only thing that was needed to implement "CI/CD" was commit the Jekyll project code to a GitHub Pages repository. No prerequisites.
There's even cases where you can accurately consider a project as having a CI process and the CI process might not even build any software at all! CI could, for example, consist solely of code style checks or other trivial checks like checking for newlines at the end of files. When projects only include these kinds of checks alone, we would still call that check process "CI" and it wouldn't be an inaccurate description of the process.