Search code examples
algorithmmathpermutationn-queens

Is there a general term formula for 3 queens problem?


The specific question description is: Put 3 queens on a chessboard of M columns and N rows, how to determine the number of ways that no two of them are in attacking positions?

Note that M is not equals to N, and M/N are larger than a Integer in C language so that there is no way to solve this question using classical computer algorithm like DFS/BFS(for time and memory complexity considerations).

I guess this problem can be calculated by the mathematical method of permutation or combination, but I am not good at math, so, please help me.


Solution

  • Yes.

    Searching for keyword "3 queens" in OEIS gives us A047659, and in the Formula section, Vaclav Kotesovec wrote that:

    In general, for m <= n, n >= 3, the number of ways to place 3 nonattacking queens on an m X n board is n^3/6*(m^3 - 3m^2 + 2m) - n^2/2*(3m^3 - 9m^2 + 6m) + n/6(2m^4 + 20m^3 - 77m^2 + 58m) - 1/24*(39m^4 - 82m^3 - 36m^2 + 88m) + 1/16*(2m - 4n + 1)(1 + (-1)^(m+1)) + 1/2(1 + abs(n - 2m + 3) - abs(n - 2m + 4))(1/24((n - 2m + 11)^4 - 42(n - 2m + 11)^3 + 656(n - 2m + 11)^2 - 4518(n - 2m + 11) + 11583) - 1/16(4m - 2n - 1)*(1 + (-1)^(n+1))) [Panos Louridas, idee & form 93/2007, pp. 2936-2938].

    This formula can be manually confirmed on small Ns and Ms. A simple Python script for this purpose is shown below:

    import fractions # to avoid floating error
    m = fractions.Fraction(4)
    n = fractions.Fraction(4)
    assert m<=n
    one = fractions.Fraction(1) 
    ans = n**3/6*(m**3 - 3*m**2 + 2*m) - n**2/2*(3*m**3 - 9*m**2 + 6*m) + n/6*(2*m**4 + 20*m**3 - 77*m**2 + 58*m) - one/24*(39*m**4 - 82*m**3 - 36*m**2 + 88*m) + one/16*(2*m - 4*n + 1)*(1 + (-1)**(m+1)) + one/2*(1 + abs(n - 2*m + 3) - abs(n - 2*m + 4))*(one/24*((n - 2*m + 11)**4 - 42*(n - 2*m + 11)**3 + 656*(n - 2*m + 11)**2 - 4518*(n - 2*m + 11) + 11583) - one/16*(4*m - 2*n - 1)*(1 + (-1)**(n+1)))
    print(ans)
    

    Unfortunately, I failed to find the proof of this formula ([Panos Louridas, idee & form 93/2007, pp. 2936-2938], as Vaclav Kotesovec cited). The journal idee & form does not seem to be freely accessible. But due to the reputation of Vaclav Kotesovec (the author of Non-attacking chess pieces), I think we should trust this result.