Search code examples
pythonpandasperformancerdbms

Enhance Python performance pandas dataframe


I have two pandas dataframes looking like this

ID email name
1 "firstname.lastname@provider.com" "firstname lastname"
... ... ...
5150 "firstname.lastname@provider.com" "firstname lastname"

with roughly 5150 rows. The data is not cleaned in the sense that it may happen that the name column contains names with typos, additional spaces, written in camelcase. Also it may be that the name is an empty string.

The second dataframe contains information like this

Id Email Name To To_Name
1 "firstname.lastname@provider.com" "firstname lastname" "firstname.lastname@provider.com" "firstname lastname"
... ... ...
8500 "firstname.lastname@provider.com" "firstname lastname" "firstname.lastname@provider.com" "firstname lastname"

with roughly 8500 rows. Here, the name columns have the same issue as the first dataframe.

I now want to create a new dataframe out of the previous two dataframes in the sense of relational databases, i.e. in the form

ID From To
1 1 2
2 4 8

where the ID column refers to the ID column of the second dataframe and the values in the From and To column refer to the first dataframe where we map names onto integers.

The code below runs but takes roughly one minute. Do you guys have ideas how I could speed it up?

Id_new = []
From_new = []
To_new = []

for i in range(0,len(second_df['Id'])):

    Id_new.append(second_df['Id'].iloc[i])
    email = second_df['Email'].iloc[i]
    name = second_df['Name'].iloc[i]
    testdf = first_Df.where(first_Df['Email'] == email).dropna()
    value = int(testdf.loc[testdf['Name'] == name].iloc[0].at["ID"])
    From_new.append(value)

    emailto = second_df['To'].iloc[i]
    nameto = second_df['To_Name'].iloc[i]
    testdf = first_Df.where(first_Df['Email'] == emailto).dropna()
    valueto = int(testdf.loc[testdf['Name'] == nameto].iloc[0].at["ID"])
    To_new.append(valueto)
        
    return output_df = pd.DataFrame(list(zip(Id_new, From_new, To_new)),
                             columns = ['ID', 'From', 'To'])

Solution

  • You should try to avoid running for loops when dealing with pandas DataFrames, most of the times there is a better way of doing it. In this case you probably want to use merge Merge, join, concatenate and compare

    You can merge first on email and name and then on to and to_name, something like this:

    df1 = pd.DataFrame(
    {"ID": ["1", "2", "3"], "email": ["a", "b", "c"], "name": ["x", "y", "z"]}
    )
    
    df2 = pd.DataFrame(
    {
        "Id": ["1", "2", "3", "4"],
        "email": ["a", "b", "c", "d"],
        "name": ["x", "y", "z", "k"],
        "to": ["m", "a", "b", "p"],
        "to_name": ["r", "x", "y", "u"],
    }
    )
    
    new_df = (
    df2.merge(df1[["ID", "email", "name"]], on=["email", "name"], how="left")
    .rename(columns={"ID": "From"})
    .merge(df1, right_on=["email", "name"], left_on=["to", "to_name"], how="left")
    .rename(columns={"ID": "To"})[["Id", "From", "To"]]
    )