Search code examples
pythonpysparkmeanmissing-datafillna

Filling missing values with mean in PySpark


I am trying to fill NaN values with mean using PySpark. Below is my code that I am using and following is the error that occurred:

from pyspark.sql.functions import avg


def fill_with_mean(df_1, exclude=set()):
    stats = df_1.agg(*(avg(c).alias(c) for c in df_1.columns if c not in exclude))
    return df_1.na.fill(stats.first().asDict())

res = fill_with_mean(df_1, ["MinTemp", "MaxTemp", "Evaporation", "Sunshine"])
res.show()

Error:

Py4JJavaError Traceback (most recent call last)
  <ipython-input-35-42f4d984f022> in <module>()
  3   stats = df_1.agg(*(avg(c).alias(c) for c in df_1.columns if c not in exclude))
  4   return df_1.na.fill(stats.first().asDict())
   ----> 5 res = fill_with_mean(df_1, ["MinTemp", "MaxTemp", "Evaporation", "Sunshine"])
  6 res.show()



  5 frames
  /usr/local/lib/python3.7/dist-packages/py4j/protocol.py in get_return_value(answer, 
  gateway_client, target_id, name)
  326                 raise Py4JJavaError(
  327                     "An error occurred while calling {0}{1}{2}.\n".
  --> 328                     format(target_id, ".", name), value)
  329             else:
  330                 raise Py4JError(

  Py4JJavaError: An error occurred while calling o376.fill.
  : java.lang.NullPointerException
at org.apache.spark.sql.DataFrameNaFunctions.$anonfun$fillMap$1(DataFrameNaFunctions.scala:418)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at scala.collection.TraversableLike.map(TraversableLike.scala:286)
at scala.collection.TraversableLike.map$(TraversableLike.scala:279)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.sql.DataFrameNaFunctions.fillMap(DataFrameNaFunctions.scala:407)
at org.apache.spark.sql.DataFrameNaFunctions.fill(DataFrameNaFunctions.scala:232)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)

Can you let me know where am I going wrong? Is there any alternative way to fill missing values using mean?

This is how my dataframe looks like: enter image description here

I wish to see mean values filled in place of null. Also, Evaporation and sunshine are not completely null, there are other values in it too.

The dataset is a csv file:

from pyspark.sql.functions import *
import pyspark
infer_schema = "true"
first_row_is_header = "true"
delimiter = ","
df_1= spark.read.format("csv").option("header","true").load('/content/weatherAUS.csv')
df_1.show()

Source: https://www.kaggle.com/jsphyg/weather-dataset-rattle-package


Solution

  • Based on your input data, I create my dataframe :

    from pyspark.sql import functions as F, Window
    
    df = spark.read.csv("./weatherAUS.csv", header=True, inferSchema=True, nullValue="NA")
    

    Then, I process the whole dataframe, excluding the columns you mentionned + the columns that cannot be replaced (date and location)

    exclude = ["date", "location"] + ["mintemp", "maxtemp", "evaporation", "sunshine"]
    
    
    df2 = df.select(
        *(
            F.coalesce(F.col(col), F.avg(col).over(Window.orderBy(F.lit(1)))).alias(col)
            if col.lower() not in exclude
            else F.col(col)
            for col in df.columns
        )
    )
    
    df2.show(5)
    +-------------------+----------+-------+-------+--------+-----------+--------+-----------+-------------+----------+----------+------------+------------+-----------+-----------+-----------+-----------+--------+--------+-------+-------+---------+------------+
    |               Date|  Location|MinTemp|MaxTemp|Rainfall|Evaporation|Sunshine|WindGustDir|WindGustSpeed|WindDir9am|WindDir3pm|WindSpeed9am|WindSpeed3pm|Humidity9am|Humidity3pm|Pressure9am|Pressure3pm|Cloud9am|Cloud3pm|Temp9am|Temp3pm|RainToday|RainTomorrow|
    +-------------------+----------+-------+-------+--------+-----------+--------+-----------+-------------+----------+----------+------------+------------+-----------+-----------+-----------+-----------+--------+--------+-------+-------+---------+------------+
    |2012-07-02 22:00:00|Townsville|   12.4|   23.3|     0.0|        6.0|    10.8|        SSW|         33.0|        SE|         S|         7.0|        20.0|       34.0|       28.0|     1019.5|     1015.5|     1.0|     2.0|   17.5|   23.0|       No|          No|
    |2012-07-03 22:00:00|Townsville|    9.1|   21.7|     0.0|        5.0|    10.9|         SE|         39.0|       SSW|       SSE|        17.0|        20.0|       26.0|       14.0|     1021.7|     1018.4|     1.0|     0.0|   16.4|   21.2|       No|          No|
    |2012-07-04 22:00:00|Townsville|    8.2|   23.4|     0.0|        5.2|    10.6|        SSW|         30.0|       SSW|        NE|        22.0|        13.0|       34.0|       40.0|     1021.7|     1018.5|     2.0|     2.0|   17.1|   22.3|       No|          No|
    |2012-07-05 22:00:00|Townsville|   10.5|   24.5|     0.0|        6.0|    10.2|          E|         39.0|       SSW|        SE|        11.0|        17.0|       48.0|       31.0|     1021.2|     1017.2|     1.0|     2.0|   17.9|   23.8|       No|          No|
    |2012-07-06 22:00:00|Townsville|   17.7|   24.1|     0.0|        6.8|     0.5|         SE|         54.0|        SE|       ESE|        19.0|        31.0|       69.0|       58.0|     1019.2|     1017.0|     8.0|     7.0|   20.1|   23.2|       No|          No|
    +-------------------+----------+-------+-------+--------+-----------+--------+-----------+-------------+----------+----------+------------+------------+-----------+-----------+-----------+-----------+--------+--------+-------+-------+---------+------------+
    only showing top 5 rows